
The X3DH Key Agreement Protocol

Moxie Marlinspike Trevor Perrin (editor)

Revision 1, 2016-11-04

Contents
1. Introduction 2

2. Preliminaries 2
2.1. X3DH parameters . 2
2.2. Cryptographic notation . 2
2.3. Roles . 3
2.4. Keys . 4

3. The X3DH protocol 4
3.1. Overview . 4
3.2. Publishing keys . 5
3.3. Sending the initial message . 5
3.4. Receiving the initial message . 7

4. Security considerations 7
4.1. Authentication . 7
4.2. Protocol replay . 7
4.3. Replay and key reuse . 8
4.4. Deniability . 8
4.5. Signatures . 8
4.6. Key compromise . 9
4.7. Server trust . 9
4.8. Identity binding . 10

5. IPR 10

6. Acknowledgements 10

7. References 11

1

1. Introduction

This document describes the “X3DH” (or “Extended Triple Diffie-Hellman”) key
agreement protocol. X3DH establishes a shared secret key between two parties
who mutually authenticate each other based on public keys. X3DH provides
forward secrecy and cryptographic deniability.

X3DH is designed for asynchronous settings where one user (“Bob”) is offline
but has published some information to a server. Another user (“Alice”) wants to
use that information to send encrypted data to Bob, and also establish a shared
secret key for future communication.

2. Preliminaries

2.1. X3DH parameters

An application using X3DH must decide on several parameters:

Name Definition
curve X25519 or X448
hash A 256 or 512-bit hash function (e.g. SHA-256 or SHA-512)
info An ASCII string identifying the application

For example, an application could choose curve as X25519, hash as SHA-512,
and info as “MyProtocol”.

An application must additionally define an encoding function Encode(PK) to
encode an X25519 or X448 public key PK into a byte sequence. The recommended
encoding consists of some single-byte constant to represent the type of curve,
followed by little-endian encoding of the u-coordinate as specified in [1].

2.2. Cryptographic notation

X3DH will use the following notation:

• The concatenation of byte sequences X and Y is X || Y .

• DH(PK1, PK2) represents a byte sequence which is the shared secret
output from an Elliptic Curve Diffie-Hellman function involving the key
pairs represented by public keys PK1 and PK2. The Elliptic Curve Diffie-
Hellman function will be either the X25519 or X448 function from [1],
depending on the curve parameter.

2

• Sig(PK, M) represents a byte sequence that is an XEdDSA signature
on the byte sequence M and verifies with public key PK, and which was
created by signing M with PK ’s corresponding private key. The signing
and verification functions for XEdDSA are specified in[2].

• KDF(KM) represents 32 bytes of output from the HKDF algorithm [3]
with inputs:

– HKDF input key material = F || KM, where KM is an input byte
sequence containing secret key material, and F is a byte sequence
containing 32 0xFF bytes if curve is X25519, and 57 0xFF bytes if
curve is X448. F is used for cryptographic domain separation with
XEdDSA [2].

– HKDF salt = A zero-filled byte sequence with length equal to the
hash output length.

– HKDF info = The info parameter from Section 2.1.

2.3. Roles

The X3DH protocol involves three parties: Alice, Bob, and a server.

• Alice wants to send Bob some initial data using encryption, and also
establish a shared secret key which may be used for bidirectional commu-
nication.

• Bob wants to allow parties like Alice to establish a shared key with him and
send encrypted data. However, Bob might be offline when Alice attempts
to do this. To enable this, Bob has a relationship with some server.

• The server can store messages from Alice to Bob which Bob can later
retrieve. The server also lets Bob publish some data which the server will
provide to parties like Alice. The amount of trust placed in the server is
discussed in Section 4.7.

In some systems the server role might be divided amongst multiple entities, but
for simplicity we assume a single server that provides the above functions for
Alice and Bob.

3

2.4. Keys

X3DH uses the following elliptic curve public keys:

Name Definition
IKA Alice’s identity key
EKA Alice’s ephemeral key
IKB Bob’s identity key
SPKB Bob’s signed prekey
OPKB Bob’s one-time prekey

All public keys have a corresponding private key, but to simplify description we
will focus on the public keys.

The public keys used within an X3DH protocol run must either all be in X25519
form, or they must all be in X448 form, depending on the curve parameter [1].

Each party has a long-term identity public key (IKA for Alice, IKB for Bob).

Bob also has a signed prekey SPKB, which he will change periodically, and a set
of one-time prekeys OPKB, which are each used in a single X3DH protocol run.
(“Prekeys” are so named because they are essentially protocol messages which
Bob publishes to the server prior to Alice beginning the protocol run).

During each protocol run, Alice generates a new ephemeral key pair with public
key EKA.

After a successful protocol run Alice and Bob will share a 32-byte secret key SK.
This key may be used within some post-X3DH secure communication protocol,
subject to the security considerations in Section 4.

3. The X3DH protocol

3.1. Overview

X3DH has three phases:

1. Bob publishes his identity key and prekeys to a server.

2. Alice fetches a “prekey bundle” from the server, and uses it to send an
initial message to Bob.

3. Bob receives and processes Alice’s initial message.

The following sections explain these phases.

4

3.2. Publishing keys

Bob publishes a set of elliptic curve public keys to the server, containing:

• Bob’s identity key IKB
• Bob’s signed prekey SPKB
• Bob’s prekey signature Sig(IKB, Encode(SPKB))
• A set of Bob’s one-time prekeys (OPKB

1, OPKB
2, OPKB

3, . . .)

Bob only needs to upload his identity key to the server once. However, Bob may
upload new one-time prekeys at other times (e.g. when the server informs Bob
that the server’s store of one-time prekeys is getting low).

Bob will also upload a new signed prekey and prekey signature at some interval
(e.g. once a week, or once a month). The new signed prekey and prekey signature
will replace the previous values.

After uploading a new signed prekey, Bob may keep the private key corresponding
to the previous signed prekey around for some period of time, to handle messages
using it that have been delayed in transit. Eventually, Bob should delete this
private key for forward secrecy (one-time prekey private keys will be deleted as
Bob receives messages using them; see Section 3.4).

3.3. Sending the initial message

To perform an X3DH key agreement with Bob, Alice contacts the server and
fetches a “prekey bundle” containing the following values:

• Bob’s identity key IKB
• Bob’s signed prekey SPKB
• Bob’s prekey signature Sig(IKB, Encode(SPKB))
• (Optionally) Bob’s one-time prekey OPKB

The server should provide one of Bob’s one-time prekeys if one exists, and then
delete it. If all of Bob’s one-time prekeys on the server have been deleted, the
bundle will not contain a one-time prekey.

Alice verifies the prekey signature and aborts the protocol if verification fails.
Alice then generates an ephemeral key pair with public key EKA.

If the bundle does not contain a one-time prekey, she calculates:

DH1 = DH(IKA, SPKB)
DH2 = DH(EKA, IKB)
DH3 = DH(EKA, SPKB)
SK = KDF(DH1 || DH2 || DH3)

If the bundle does contain a one-time prekey, the calculation is modified to
include an additional DH :

5

DH4 = DH(EKA, OPKB)
SK = KDF(DH1 || DH2 || DH3 || DH4)

The following diagram shows the DH calculations between keys. Note that DH1
and DH2 provide mutual authentication, while DH3 and DH4 provide forward
secrecy.

Figure 1: DH1. . . DH4

After calculating SK, Alice deletes her ephemeral private key and the DH outputs.

Alice then calculates an “associated data” byte sequence AD that contains
identity information for both parties:

AD = Encode(IKA) || Encode(IKB)

Alice may optionally append additional information to AD, such as Alice and
Bob’s usernames, certificates, or other identifying information.

Alice then sends Bob an initial message containing:

• Alice’s identity key IKA
• Alice’s ephemeral key EKA
• Identifiers stating which of Bob’s prekeys Alice used
• An initial ciphertext encrypted with some AEAD encryption scheme [4]
using AD as associated data and using an encryption key which is either
SK or the output from some cryptographic PRF keyed by SK.

The initial ciphertext is typically the first message in some post-X3DH commu-
nication protocol. In other words, this ciphertext typically has two roles, serving
as the first message within some post-X3DH protocol, and as part of Alice’s
X3DH initial message.

After sending this, Alice may continue using SK or keys derived from SK within
the post-X3DH protocol for communication with Bob, subject to the security
considerations in Section 4.

6

3.4. Receiving the initial message

Upon receiving Alice’s initial message, Bob retrieves Alice’s identity key and
ephemeral key from the message. Bob also loads his identity private key, and the
private key(s) corresponding to whichever signed prekey and one-time prekey (if
any) Alice used.

Using these keys, Bob repeats the DH and KDF calculations from the previous
section to derive SK, and then deletes the DH values.

Bob then constructs the AD byte sequence using IKA and IKB, as described
in the previous section. Finally, Bob attempts to decrypt the initial ciphertext
using SK and AD. If the initial ciphertext fails to decrypt, then Bob aborts the
protocol and deletes SK.

If the initial ciphertext decrypts successfully the protocol is complete for Bob.
Bob deletes any one-time prekey private key that was used, for forward secrecy.
Bob may then continue using SK or keys derived from SK within the post-X3DH
protocol for communication with Alice, subject to the security considerations in
Section 4.

4. Security considerations

4.1. Authentication

Before or after an X3DH key agreement, the parties may compare their identity
public keys IKA and IKB through some authenticated channel. For example,
they may compare public key fingerprints manually, or by scanning a QR code.
Methods for doing this are outside the scope of this document.

If authentication is not performed, the parties receive no cryptographic guarantee
as to who they are communicating with.

4.2. Protocol replay

If Alice’s initial message doesn’t use a one-time prekey, it may be replayed to
Bob and he will accept it. This could cause Bob to think Alice had sent him the
same message (or messages) repeatedly.

To mitigate this, a post-X3DH protocol may wish to quickly negotiate a new
encryption key for Alice based on fresh random input from Bob. This is the
typical behavior of Diffie-Hellman based ratcheting protocols [5].

Bob could attempt other mitigations, such as maintaining a blacklist of ob-
served messages, or replacing old signed prekeys more rapidly. Analyzing these
mitigations is beyond the scope of this document.

7

4.3. Replay and key reuse

Another consequence of the replays discussed in the previous section is that a
successfully replayed initial message would cause Bob to derive the same SK in
different protocol runs.

For this reason, any post-X3DH protocol MUST randomize the encryption key
before Bob sends encrypted data. For example, Bob could use a DH-based
ratcheting protocol to combine SK with a freshly generated DH output to get a
randomized encryption key [5].

Failure to randomize Bob’s encryption key may cause catastrophic key reuse.

4.4. Deniability

X3DH doesn’t give either Alice or Bob a publishable cryptographic proof of the
contents of their communication or the fact that they communicated.

Like in the OTR protocol [6], in some cases a third party that has compromised
legitimate private keys from Alice or Bob could be provided a communication
transcript that appears to be between Alice and Bob and that can only have
been created by some other party that also has access to legitimate private
keys from Alice or Bob (i.e. Alice or Bob themselves, or someone else who has
compromised their private keys).

If either party is collaborating with a third party during protocol execution, they
will be able to provide proof of their communication to such a third party. This
limitation on “online” deniability appears to be intrinsic to the asynchronous
setting [7].

4.5. Signatures

It might be tempting to observe that mutual authentication and forward secrecy
are achieved by the DH calculations, and omit the prekey signature. However,
this would allow a “weak forward secrecy” attack: A malicious server could
provide Alice a prekey bundle with forged prekeys, and later compromise Bob’s
IKB to calculate SK.

Alternatively, it might be tempting to replace the DH-based mutual authenti-
cation (i.e. DH1 and DH2) with signatures from the identity keys. However,
this reduces deniability, increases the size of initial messages, and increases the
damage done if ephemeral or prekey private keys are compromised, or if the
signature scheme is broken.

8

4.6. Key compromise

Compromise of a party’s private keys has a disastrous effect on security, though
the use of ephemeral keys and prekeys provides some mitigation.

Compromise of a party’s identity private key allows impersonation of that party
to others. Compromise of a party’s prekey private keys may affect the security
of older or newer SK values, depending on many considerations.

A full analysis of all possible compromise scenarios is outside the scope of this
document, however a partial analysis of some plausible scenarios is below:

• If one-time prekeys are used for a protocol run then a compromise of
Bob’s identity key and prekey private keys at some future time will not
compromise the older SK, assuming the private key for OPKB was deleted.

• If one-time prekeys were not used for a protocol run, then a compromise
of the private keys for IKB and SPKB from that protocol run would
compromise the SK that was calculated earlier. Frequent replacement
of signed prekeys mitigates this, as does using a post-X3DH ratcheting
protocol which rapidly replaces SK with new keys to provide fresh forward
secrecy [5].

• Compromise of prekey private keys may enable attacks that extend into
the future, such as passive calculation of SK values, and impersonation
of arbitrary other parties to the compromised party (“key-compromise
impersonation”). These attacks are possible until the compromised party
replaces his compromised prekeys on the server (in the case of passive
attack); or deletes his compromised signed prekey’s private key (in the
case of key-compromise impersonation).

4.7. Server trust

A malicious server could cause communication between Alice and Bob to fail
(e.g. by refusing to deliver messages).

If Alice and Bob authenticate each other as in Section 4.1, then the only additional
attack available to the server is to refuse to hand out one-time prekeys, causing
forward secrecy for SK to depend on the signed prekey’s lifetime (as analyzed in
the previous section).

This reduction in initial forward secrecy could also happen if one party maliciously
drains another party’s one-time prekeys, so the server should attempt to prevent
this, e.g. with rate limits on fetching prekey bundles.

9

4.8. Identity binding

Authentication as in Section 4.1 does not necessarily prevent an “identity mis-
binding” or “unknown key share” attack.

This results when an attacker (“Charlie”) falsely presents Bob’s identity key
fingerprint to Alice as his (Charlie’s) own, and then either forwards Alice’s initial
message to Bob, or falsely presents Bob’s contact information as his own.

The effect of this is that Alice thinks she is sending an initial message to Charlie
when she is actually sending it to Bob.

To make this more difficult the parties can include more identifying information
into AD, or hash more identifying information into the fingerprint, such as
usernames, phone numbers, real names, or other identifying information. Charlie
would be forced to lie about these additional values, which might be difficult.

However, there is no way to reliably prevent Charlie from lying about additional
values, and including more identity information into the protocol often brings
trade-offs in terms of privacy, flexibility, and user interface. A detailed analysis
of these trade-offs is beyond the scope of this document.

5. IPR

This document is hereby placed in the public domain.

6. Acknowledgements

The X3DH protocol was developed by Moxie Marlinspike and Trevor Perrin.

The underlying “Triple DH” key agreement was proposed by Caroline Kudla and
Kenny Paterson in [8], extending the earlier “Double DH” (aka “Protocol 4”) key
agreement from Simon Blake-Wilson et al [9]. Using signatures in combination
with implicitly-authenticated key agreement has been discussed in works like
[10] and [11].

Thanks to Mike Hamburg for discussions about identity binding and elliptic
curve public keys.

Thanks to Nik Unger and Matthew Green for discussions about deniability.

Thanks to Matthew Green, Tom Ritter, Joseph Bonneau, and Benedikt Schmidt
for editorial feedback.

10

7. References

[1] A. Langley, M. Hamburg, and S. Turner, “Elliptic Curves for Security.”
Internet Engineering Task Force; RFC 7748 (Informational); IETF, Jan-2016.
http://www.ietf.org/rfc/rfc7748.txt

[2] T. Perrin, “The XEdDSA and VXEdDSA Signature Schemes,” 2016. https:
//whispersystems.org/docs/specifications/xeddsa/

[3] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF).” Internet Engineering Task Force; RFC 5869 (Informa-
tional); IETF, May-2010. http://www.ietf.org/rfc/rfc5869.txt

[4] P. Rogaway, “Authenticated-encryption with Associated-data,” in Proceedings
of the 9th ACM Conference on Computer and Communications Security, 2002.
http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf

[5] T. Perrin, “The Double Ratchet Algorithm (work in progress),” 2016.

[6] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record Communication, or,
Why Not to Use PGP,” in Proceedings of the 2004 acm workshop on privacy in
the electronic society, 2004. http://doi.acm.org/10.1145/1029179.1029200

[7] N. Unger and I. Goldberg, “Deniable Key Exchanges for Secure Messaging,” in
Proceedings of the 22Nd acm sigsac conference on computer and communications
security, 2015. http://doi.acm.org/10.1145/2810103.2813616

[8] C. Kudla and K. G. Paterson, “Modular Security Proofs for Key Agreement
Protocols,” in Advances in Cryptology - ASIACRYPT 2005: 11th International
Conference on the Theory and Application of Cryptology and Information
Security, 2005. http://www.isg.rhul.ac.uk/~kp/ModularProofs.pdf

[9] S. Blake-Wilson, D. Johnson, and A. Menezes, “Key agreement protocols
and their security analysis,” in Crytography and Coding: 6th IMA International
Conference Cirencester, UK, December 17–19, 1997 Proceedings, 1997. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.387

[10] C. Cremers and M. Feltz, “One-round Strongly Secure Key Exchange with
Perfect Forward Secrecy and Deniability.” Cryptology ePrint Archive, Report
2011/300, 2011. http://eprint.iacr.org/2011/300

[11] J. P. Degabriele, A. Lehmann, K. G. Paterson, N. P. Smart, and M. Strefler,
“On the Joint Security of Encryption and Signature in EMV.” Cryptology ePrint
Archive, Report 2011/615, 2011. http://eprint.iacr.org/2011/615

11

http://www.ietf.org/rfc/rfc7748.txt
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/xeddsa/
http://www.ietf.org/rfc/rfc5869.txt
http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
http://doi.acm.org/10.1145/1029179.1029200
http://doi.acm.org/10.1145/2810103.2813616
http://www.isg.rhul.ac.uk/~kp/ModularProofs.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.387
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.387
http://eprint.iacr.org/2011/300
http://eprint.iacr.org/2011/615

	1. Introduction
	2. Preliminaries
	2.1. X3DH parameters
	2.2. Cryptographic notation
	2.3. Roles
	2.4. Keys

	3. The X3DH protocol
	3.1. Overview
	3.2. Publishing keys
	3.3. Sending the initial message
	3.4. Receiving the initial message

	4. Security considerations
	4.1. Authentication
	4.2. Protocol replay
	4.3. Replay and key reuse
	4.4. Deniability
	4.5. Signatures
	4.6. Key compromise
	4.7. Server trust
	4.8. Identity binding

	5. IPR
	6. Acknowledgements
	7. References

