The Sesame Algorithm: Session Management for

Asynchronous Message Encryption

Moxie Marlinspike Trevor Perrin (editor)

Revision 2, 2017-04-14

Contents

1. Introduction

2. Preliminaries
2.1. Overviewo
2.2. Assumptions

3. Sesame
3.1. Devicestateo
3.2. Updating devicestate L.
3.3. Sending messageso
3.4. Receiving messages

4. Optional features
4.1. Retry requests and delivery receipts
4.2, Session expiration

5. Implementation considerations
.1, Server e
5.2. X3DH and the Double Ratchet

6. Security considerations
6.1. Authentication
6.2. Device compromise Lo
6.3. Protecting server communications0
6.4. Deleting old data oL
6.5. Bounded loops and bounded storage
6.7. Error handlingo oo oo

7. IPR
8. Acknowledgements

9. References

10
10
11

12
12
12

13
13
13
15
15
16
16

16

16

17

1. Introduction

This document describes the Sesame algorithm for managing message encryption
sessions in an asynchronous and multi-device setting.

Sesame was designed to manage Double Ratchet sessions created with X3DH
key agreement [1], [2]. However, Sesame is a generic algorithm that works with
any session-based message encryption algorithm that meets certain conditions.

2. Preliminaries

2.1. Overview

Asynchronous key agreement protocols like X3DH enable one party to create a
message encryption session and use that session to encrypt an initial message to
a recipient, even if the recipient is offline [1]. The recipient can later retrieve the
message and use it to calculate a matching session which is used to decrypt the
message.

Ratcheting algorithms like the Double Ratchet allow these two parties to update
session keys as they communicate, for forward secrecy [2].

Combining these algorithms in a practical context introduces some new concerns:

e Alice and Bob might each have several devices, so encrypting a message
from Alice to Bob might require creating sessions from Alice’s sending
device to all of Bob’s devices, and also to Alice’s other devices (so they
receive a copy of the message).

e Alice and Bob might add and remove devices, so they will have to add and
delete sessions to handle these changes.

e Alice and Bob might simultaneously initiate a new session with each other,
so that two new sessions are created. For the Double Ratchet to be
maximally effective Alice and Bob must send and receive messages using
matching sessions, so somehow they must agree on which matching sessions
to use.

e Alice might choose to erase her device’s session state, or restore from a
backup, thus causing either her or Bob to possess orphaned sessions which
no longer match one of the other party’s sessions.

Any solutions to the above must consider that messages might be lost or arrive
out-of-order, that clock synchronization is not reliable, and that attackers might
compromise devices and/or interfere with communication.

The Sesame algorithm manages the creation, deletion, and use of sessions to
support these requirements. A central idea is for each device to keep track of

an “active” session for each other device it is communicating with, and use the
active session when sending to that device. When a message is received on an
“inactive” session, that becomes the new active session. By this process each
device converges on using a single session for each remote device it communicates
with.

2.2. Assumptions

Sesame is based on the following assumptions:
Server
e There is a server which stores the current record of all users and devices.

e The server temporarily stores the messages that devices send to each other,
until the messages are fetched.

Users
e At any point in time there is a set of users.
e Users might be added or deleted at any time.
e Each user has a UserID (e.g. a username or phone number).
e After a user is deleted, its UserID can be taken by a new user.
Devices
e At any point in time each user has a nonempty set of devices.
e Users can add or delete devices at any time.
e Each device has a DevicelID which is unique for the UserID.
e Devices can ask the server for information about other users and devices.

e Devices can maintain state, but at any point in time this state might be
deleted in whole or part (e.g. by hardware failure or a user action), or
rolled back to an earlier state (e.g. by restoring a backup).

e Devices have clocks that can measure elapsed time, but are not synchro-
nized.

Mailboxes
e The server stores a mailbox for each device.
e A mailbox holds a set of messages that were sent to the device.
e Messages are removed from the mailbox when fetched.

e Devices can send messages to other devices’ mailboxes. The server stores
the sending device’s UserID and DevicelD alongside the message.

Devices can fetch messages from their own mailbox. The recipient device
fetches the message and the sender’s UserID and DevicelD from the server.

Messages sent to a mailbox are unreliable in normal operation - they may
be corrupted, deleted, reordered, delayed, or duplicated before arriving at
the mailbox.

In normal operation, a message that hasn’t arrived at a mailbox within
some time interval (MAXLATENCY) has been lost.

Messages sent to a mailbox might be subject to adversary actions - an
attacker (including the server) might corrupt, delete, reorder, duplicate, or
forge messages before they arrive at the mailbox.

Sessions

Messages can be encrypted and decrypted using a session, which is some
secret data stored by a device.

Decrypting a message might fail (e.g. if the ciphertext has been tampered
with or forged, and thus fails an authentication check).

An encrypted message can only be decrypted using a matching session.
There is some SessionID which uniquely identifies each session.

A session might contain different data after encrypting or decrypting
a message (e.g. keys might be deleted after they are used, for forward
secrecy).

Session creation for senders

Each device has an identity key pair consisting of a public key and
private key.

A device can create a new initiating session at any time.

Creating an initiating session requires specifying the identity public key
for the intended recipient device which will receive the matching session.

Creating a new session might fail (e.g. the sending device may have to
fetch and cryptographically authenticate parameters associated with the
recipient device, such as prekeys [1]).

Session creation for recipients

All messages encrypted by an initiating session are initiation messages.

All initiation messages contain the sending device’s identity public key in
an unencrypted header.

Upon receiving an initiation message, the intended recipient device can
create a matching session which is used to decrypt the initiation message.

e Creating a matching session may fail (e.g. if cryptographic authentication
of the initiation message fails).

e Upon decrypting a message for the first time, an initiating session becomes
a regular (non-initiating) session, and thus stops producing initiation
messages.

3. Sesame

The Sesame algorithm defines the state that each device stores, and the algorithms
that use this state to send and receive encrypted messages.

3.1. Device state

Each device stores a set of UserRecords for its correspondents, indexed by
UserlD.

Each UserRecord contains a set of DeviceRecords, indexed by DevicelD.

Each DeviceRecord may contain an active session and/or an ordered list of
inactive sessions.

Each device stores a UserRecord for its own UserID, but does not store a
DeviceRecord for its own DeviceID. This UserRecord enables a device to send a
copy of each outbound message to the user’s other devices.

A UserRecord or DeviceRecord might be marked stale, meaning the record
corresponds to a deleted user or device but is being kept around to decrypt
delayed messages.

A stale record may be deleted by the sending device at any time (including imme-
diately upon being marked stale). To handle delayed messages, the recommended
deletion policy is for a stale record to contain a timestamp recording when it
was first marked stale. Once the timestamp is older than MAXLATENCY, the
stale record can be safely deleted (without fear of message loss) after the next
time the device fetches and processes all messages from its mailbox.

Each device stores an identity key pair (a public key and private key) for
cryptographic authentication. A device will always have the same DeviceID and
identity key pair (to change these for some physical device the device must be
logically deleted and then added with new values).

Sesame supports two different models for key pairs: With per-user identity
keys, all devices under a user share the same key pair. With per-device
identity keys, each device may have a different key pair.

With per-user identity keys, identity public keys for other devices are stored
in UserRecords. With per-device identity keys, identity public keys for other
devices are stored in Device Records.

3.2. Updating device state

Devices can modify their local state in several ways:

Devices can delete UserRecords, DeviceRecords, and sessions. If the last session
in a DeviceRecord is deleted, then the DeviceRecord is deleted. If the last
DeviceRecord in a UserRecord is deleted, then the UserRecord is deleted.

Devices can insert new sessions into a DeviceRecord. An inserted session always
becomes the DeviceRecord’s active session, and the previously active session (if
any) is moved to the head of the DeviceRecord’s inactive sessions list. If the
inactive sessions list grows too large, sessions may be deleted from the tail end.

Devices can activate an inactive session in a DeviceRecord, which moves the
inactive session to the DeviceRecord’s active session, and moves the previously
active session (if any) to the head of the DeviceRecord’s inactive sessions list.

Devices can mark UserRecords or DeviceRecords as stale.

Devices can conditionally update their records based on a (UserID, DevicelD,
public key) tuple:

(1) If a relevant UserRecord does not exist or stores an identity public key that
doesn’t equal the input public key, then an empty UserRecord is added
for this UserID (replacing the previous UserRecord if one exists). With
per-user identity public keys, the input public key is stored in the empty
record.

(2) If a relevant DeviceRecord does not exist or stores an identity public key
that doesn’t equal the input public key, then an empty DeviceRecord is
added for this DeviceID (replacing the previous DeviceRecord if one exists).
With per-device identity public keys, the input public key is stored in the
empty record. If the UserID and DevicelD equal the device’s own values,
then a DeviceRecord is not added (a device doesn’t add a DeviceRecord
for itself).

Devices can prep for encrypting to a (UserID, DevicelD, public key) tuple:

(1) The device deletes the relevant UserRecord and/or DeviceRecord if they
are stale.

(2) The device conditionally updates its records based on the tuple.

(3) If the relevant DeviceRecord doesn’t have an active session, then the
device creates a new initiating session using the relevant public key for the
DeviceRecord. The new session is inserted into the DeviceRecord.

3.3. Sending messages

The input to the Sesame sending process is some plaintext and a set of recipient
UserIDs. The recipient set includes the device’s own UserlD.

The plaintext is encrypted and sent by the sending device using the following
process for each recipient UserlID:

(1) If a relevant non-stale UserRecord exists for the recipient UserID, then
for each non-stale DeviceRecord in the UserRecord that contains an active
session, the sending device encrypts the plaintext using that active session.

(2) The recipient UserID is sent to the server, along with the list of encrypted
messages and a corresponding list of DevicelDs indicating the recipient
mailbox for each message. These lists will be empty if no relevant active
sessions exist.

(3) If the recipient UserID is currently in-use and the sender’s list of DeviceIDs
is current for the recipient UserID, then the server accepts the messages
and the messages are sent to the relevant mailboxes. This process then
terminates for the recipient UserID, returning to step 1 for the next recipient
UserID.

(4) Otherwise the server rejects the messages and either informs the sending
device if the recipient UserID does not exist; or informs the sending device
of the old DewvicelDs and new DevicelDs needed to make the sending
device’s records current, and the identity public keys corresponding to any
new DeuvicelDs.

(5) If the server indicates that the recipient UserID does not exist, then the
sending device marks the relevant UserRecord (if any) as stale. The sending
device then terminates this process for the recipient UserID, returning to
step 1 for the next recipient UserID.

(6) For each old DewvicelD, the sending device marks the relevant DeviceRecord
as stale.

(7) For each new DevicelD, the sending device preps for encrypting to the
tuple (UserID, DevicelD, relevant public key).

(8) This process is restarted from step 1 for the current recipient UserID.

If any error occurs in encrypting to a particular user (e.g. an invalid server
response, or a failure during session creation), then the sending device shall
discard any changes to the relevant UserRecord. This avoids leaving records in
an inconsistent state. The sending device may choose to continue encrypting
and sending to other users, or may terminate the entire sending process.

To avoid excessive looping in case of a malicious or buggy server, devices should
impose some limit on the number of times they’re willing to repeat the message
sending loop for a recipient user.

3.4.

Receiving messages

The input to the Sesame receiving process is an encrypted message and the
sender’s UserID and DevicelD, all of which were fetched from the server.

How the message is fetched is out of scope for this document. Devices might
periodically poll the server, or they might receive some notification when new
messages are available to be fetched.

An encrypted message is decrypted by a recipient device using the following
process:

(1)

3)
(4)

If the encrypted message is an initiation message and the recipient device
does not have a relevant DeviceRecord containing a session that can decrypt
the message, then the following steps are performed:

(a) The relevant public key is extracted from the message header.

(b) The device conditionally updates its records based on the (sender’s
UserID, sender’s DevicelD, relevant public key) tuple.

(¢) The device creates a new session using the initiating message and
inserts the new session into the relevant DeviceRecord.

If no session in the relevant DeviceRecord can decrypt the encrypted
message, then the encrypted message is discarded, all changes to device
state are discarded, and this process terminates.

Otherwise, the message is decrypted with the relevant session.

If the relevant session is not active it is activated.

If any error occurs in parsing or processing the message, including cryptographic
errors in session creation or decrypting the message, then the device shall discard
all state changes, discard the encrypted message, and terminate the decryption
process.

4. Optional features

4.1. Retry requests and delivery receipts

If the sender or recipient device’s state has been rolled back, or the recipient
device’s state has been deleted, then it is possible for the recipient device to
receive a valid message that it can’t decrypt.

To handle this without message loss the sending device may store a set of
MessageRecords, indexed by some MessagelID which is unique for each
encrypted message. If a single message is encrypted to several recipient devices
the sender will store a separate MessageRecord for each recipient device, each
with a unique MessagelID. Each MessageRecord stores the following values:

e The plaintext of the encrypted message.
e The UserID for the recipient device.
e The SessionID for the session the message was encrypted with.

When the recipient device receives an undecryptable message, the recipient
device sends an unencrypted retry request message to the original sending
device’s mailbox, containing the undecryptable message’s MessagelD.

When the original sending device fetches a retry request along with the relevant
UserID and DevicelD of the device that sent the retry request, the original
sending device executes the following resending process:

(1) If the MessageID doesn’t refer to a current MessageRecord, then the retry
request is discarded and this process terminates.

(2) If the relevant MessageRecord doesn’t contain a UserID that equals the
UserID used to send the retry request, then the retry request is discarded
and this process terminates. (Note that there is no similar check for
DevicelD; for flexibility, the retry request is allowed from a different
DevicelID than was originally sent to.)

(3) If a non-stale UserRecord and non-stale DeviceRecord with an active session
do not exist for the relevant UserID and DevicelD; or if such a session does
exist but it matches the SessionID from the relevant MessageRecord, then:

(a) The resending device queries the server for the identity public key
corresponding to the relevant UserID and DewvicelD.

(b) If the server indicates that the recipient UserID or DeviceID do not
exist, then the relevant records are marked stale, the retry request is
discarded, and this process terminates.

(¢) The sender then preps for encrypting to the tuple (UserID, DevicelD,
public key).

10

(d) If the DeviceRecord’s active session matches the SessionID from
the relevant MessageRecord, then the sending device creates a new
initiating session using the relevant public key for the DeviceRecord.
The new session is inserted into the DeviceRecord. This prevents the
sending device from repeatedly sending a message using an orphaned
session which doesn’t match any recipient session.

(4) The resending device encrypts the plaintext from the MessageRecord using
the active session from the relevant DeviceRecord.

(5) The resending device sends the encrypted message to the server, along
with the UserID and DevicelD indicating the recipient mailbox.

(6) If the server indicates that the recipient UserID or DeviceID do not exist,
then the relevant records are marked stale, the retry request is discarded,
and this process terminates.

(7) Otherwise, the server accepts the message and the message is sent to the
relevant mailbox. The resending device deletes the old MessageRecord and
adds a new MessageRecord for the new encrypted message.

MessageRecords might be deleted after some time has elapsed, or if the plaintext
they refer to has been deleted from the sending device by the user. Devices
might also send delivery receipts upon successful message decryption. Delivery
receipts refer to some MessagelID and notify the sender that the MessageRecord
may be deleted. Delivery receipts may be encrypted or unencrypted (since they
follow every received message, encrypting them doesn’t accomplish much).

To avoid excessive resending, devices should impose some limit on the number
of times they’re willing to resend a message. If any other error occurs, then the
resending device shall discard any state changes and terminate the process.

4.2. Session expiration

It may be desirable for devices to periodically replace old sessions with new
sessions, for security purposes. One approach is to give each session a timestamp.
The timestamp is set to the current time when an initiating session is created.
When initiation messages are fetched, the server tells the recipient device the
time difference between when the message arrived at the mailbox and the current
time. The recipient device sets the timestamp for any initiated session to the
current time minus this difference.

Time constants MAXSEND and MAXREC'YV are defined, where MAXRECV
must be greater than MAXSEND + 2(MAXLATENCY). At time MAXSEND
past its timestamp a session must no longer be used for encryption, and shall be
moved to the head of the inactive sessions list if active. Attempts to activate
such a session have no effect. At time MAXRECYV past a session’s timestamp the
session may be deleted, after first fetching and processing all mailbox messages.

11

5. Implementation considerations

5.1. Server

For simplicity of presentation this document discusses a single server that handles
all user and device records, and all messages. In a real system these functions
might be distributed across multiple entities.

For example, different servers might handle different groups of users. In this
case, Alice would send a message to Bob by contacting Bob’s server, and Bob
would send a message to Alice by contacting Alice’s server.

For another example, the server(s) that handle user and device records might be
separate from the server(s) that handle mailboxes.

Other divisions of labor might be possible; analyzing all the possibilities is
outside the scope of this document.

5.2. X3DH and the Double Ratchet

Sesame was designed for use with Double Ratchet sessions [2] created via X3DH
key agreement [1].

In this instantiation, devices will publish one-time prekeys and signed
prekeys to the server, alongside their identity public key.

To create an initiating session, a sending device will contact the server and fetch
a prekey bundle containing the recipient device’s identity public key, signed
prekey, and a one-time prekey (if one is available). These values will be used
by the X3DH algorithm to create both a secret key that initializes a Double
Ratchet session, and an X3DH initial message.

The X3DH initial message is attached to every initiation message, so that the
recipient can use it to create a matching Double Ratchet session. Once a response
to an initiation message is received, the original sender ceases attaching the
X3DH initial message to future messages, so the devices henceforth communicate
using only the Double Ratchet.

12

6. Security considerations

6.1. Authentication

Sesame relies on users to authenticate identity public keys with their correspon-
dents. For example, a pair of users might compare public key fingerprints for all
their devices manually, or by scanning a QR code. The details of authentication
methods are outside the scope of this document.

If authentication is not performed, users receive no cryptographic guarantee as
to who they are communicating with.

A Sesame device might encounter a changed identity public key (or keys) for
some remote user when sending, receiving, or resending messages.

This might indicate that a new user is using the UserID, that the user re-installed
the application, or that the user added new devices (if per-device identity keys
are being used). It might also indicate an attempt to impersonate the remote
user by a malicious server, or by a malicious user who hijacked the original user’s
UserlD.

Whenever a change in identity keys is detected users must repeat the authenti-
cation process or they will receive no cryptographic guarantee as to who they
are communicating with. A device may wish to pause (or abort) the sending,
receiving, or resending processes if a key change occurs, and only continue (or
restart) the process if the user affirmatively acknowledges the key change. In
this case, the conditional update operation will pause (or generate an error) on
detecting a key change.

6.2. Device compromise

Security is catastrophically compromised if an attacker learns a device’s secret
values, such as the identity private key and session state. Recovery from a
device compromise requires the user to replace the compromised device and
compromised identity key pair and notify all correspondents of the new public
key.

An attacker can leverage a compromise in many ways:

e An attacker with a device’s identity private key can impersonate the
compromised device to other devices.

e An attacker who can compromise a device may be able to keep persistent
backdoor access to the device, or tamper with it to reduce its future security
(e.g. weakening the random number generator).

e An attacker who can steal a device’s secret keys can probably also steal the
plaintext of locally archived messages, and any plaintext in MessageRecords.

13

e An attacker might try to use compromised keys for passive decryption.
For example, the attacker might try to retroactively decrypt old communi-
cations, or stealthily decrypt future communications. The attacker might
also use some cryptanalytic or forensic attack to reveal a device’s state at
some time in the past, then try to use this state to decrypt as much old
traffic as possible.

Sesame’s resistance to passive decryption is inherited from the session
creation and message encryption algorithms it is instantiated with. For
example, when Sesame uses X3DH and the Double Ratchet Algorithm,
passive decryption of pre-compromise and post-compromise messages is
tightly bounded by the use of ephemeral keys, prekeys, and ratcheting ([1],
[2)).

The only caveat occurs when security is improved by message exchange with
matching sessions, as in the Diffie-Hellman ratchet [2]. In that case, and
in the rare instance that two parties simultaneously initiate new sessions

with each other, then it may take a few exchanged messages before Sesame
converges on a single pair of matching sessions.

e Prior to compromising the target device, an attacker might manipulate
communications so as to increase the attacker’s ability to decrypt older
messages once the compromise occurs. For example, the server could make
each message received by the target device use a new X3DH initial message
without a one-time prekey (by forging retry requests, or by repeatedly
deleting and re-adding devices). In this case, messages sent to the target
during the lifetime of a signed prekey’s private key would be decryptable
if the attacker compromises that private key.

e An attacker might try to perform key-compromise impersonation,
where the attacker impersonates other parties to the compromised party
(which is different than impersonating the compromised party to other
parties). For example, when Sesame uses X3DH and the Double Ratchet,
the server can use a compromised signed prekey with X3DH to create
sessions with the target that appear to match arbitrary third parties.
This attacker capability would continue until the target deletes their
compromised signed prekey private key(s). Following this, the attacker
could continue impersonating specific third parties to the target using any
sessions the attacker had possession of prior to signed prekey deletion. This
attacker capability would continue unless (and until) the target deletes the
attacker-controlled sessions through some means such as session expiration.

To mitigate the last two points, Sesame devices using X3DH and the Double
Ratchet, or similar algorithms, should delete their signed prekeys on a regular
basis, without allowing a malicious server to inhibit deletion. Session expiration
(Section 4.2) would help mitigate the final point.

Despite the various mitigations, none of these threats can be eliminated com-
pletely. None of the mitigations change the catastrophic nature of a device

14

compromise, or the necessity of completely replacing a compromised device and
any compromised keys.

6.3. Protecting server communications

Communication between devices and servers should be encrypted and authenti-
cated. This limits the amount of metadata that is exposed to eavesdroppers, and
makes it harder for third-party attackers to perform active or passive attacks on
device-to-device communications.

If an attacker is able to impersonate a victim device when authenticating to the
server, the attacker could fetch messages being sent to this device. The attacker
would not be able to decrypt these messages, but would learn sender UserIDs
and DevicelDs.

This could also occur if the attacker registers with the server using the same
UserID, DevicelD, and identity public key that had previously belonged to a
victim device. To mitigate this, the server could assign random DewvicelDs, to
prevent reuse, or could require the registering user to prove possession of the
identity private key (e.g. by signing a nonce during registration).

6.4. Deleting old data

When a user chooses to delete a plaintext message from their device, any
MessageRecords containing copies of that plaintext should also be deleted.

Sesame uses time thresholds to determine when it is safe to delete older sessions
(i.e. stale UserRecords and DeviceRecords as in Section 3.1, and session expiration
as in Section 4.2). The idea is for a recipient to wait for a MAXLATENCY
time period after the last messages might have been sent that require the older
sessions, at which point these messages have either arrived in the recipient’s
mailbox or been lost. After the recipient next fetches and processes all mailbox
messages, the recipient is assured there are no more outstanding messages that
require the older sessions, so the older sessions may be deleted.

If clock errors result in the recipient deleting the sessions too early, then there is
a risk that undecryptable delayed messages may arrive. If clock errors prevent
the recipient’s clock from advancing, these older sessions might never be deleted.

To mitigate these risks clients should use secure and reliable clocks that cannot
be manipulated by an attacker. Clients might also wish to combine time checks
with other checks (e.g. counting some number of message round-trips or other
events), to provide sanity checks so that brief clock glitches don’t delete needed
data.

15

6.5. Bounded loops and bounded storage

The message sending loop in Section 3.3 will repeatedly attempt to adjust the
device’s records to match the server’s records. The resending process in Section
4.1 could be repeatedly triggered to resend a message to a recipient.

To avoid excessive looping in either case, devices are recommended to use some
counter with each process (e.g. stored in memory during sending, and stored in a
MessageRecord for resending). Devices would trigger an error after an excessive
number of attempts to send, or resend, a message.

A device might also be triggered to create an excessive number of DeviceRecords
or sessions for some UserID. A device might choose to set some reasonable limit
on the number of DeviceRecords it will store for any UserRecord. A device might
also choose to set some limit on the number of sessions it will store for any
DeviceRecord. Extra sessions will be deleted from the tail of the inactive sessions
list if this limit is exceeded.

6.7. Error handling

Care should be taken that any error in sending, receiving, or resending messages
terminates the relevant process, and discards any changes that would leave the
device in an inconsistent state.

Errors in message sending or resending might result in a message being delivered
to some but not all of its intended recipient mailboxes.

Higher-level protocols built on Sesame must be prepared to handle partial delivery
of messages to groups of recipients. One option would be to add transaction
semantics so that messages are only committed to mailboxes if sending succeeds
for all users, and to mandate support for resending so that messages are likely
to be delivered.

7. IPR

This document is hereby placed in the public domain.

8. Acknowledgements

Thanks to Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Douglas Stebila,
Nik Kinkel, and Tom Ritter for helpful discussions.

Thanks to Michael Kirk, Lilia Kai, and Tom Ritter for editorial feedback.

16

9. References

[1] M. Marlinspike and T. Perrin, “The X3DH Key Agreement Protocol,” 2016.
https://whispersystems.org/docs/specifications/x3dh/

[2] T. Perrin and M. Marlinspike, “The Double Ratchet Algorithm,” 2016.
https://whispersystems.org/docs/specifications/doubleratchet/

17

https://whispersystems.org/docs/specifications/x3dh/
https://whispersystems.org/docs/specifications/doubleratchet/

	1. Introduction
	2. Preliminaries
	2.1. Overview
	2.2. Assumptions

	3. Sesame
	3.1. Device state
	3.2. Updating device state
	3.3. Sending messages
	3.4. Receiving messages

	4. Optional features
	4.1. Retry requests and delivery receipts
	4.2. Session expiration

	5. Implementation considerations
	5.1. Server
	5.2. X3DH and the Double Ratchet

	6. Security considerations
	6.1. Authentication
	6.2. Device compromise
	6.3. Protecting server communications
	6.4. Deleting old data
	6.5. Bounded loops and bounded storage
	6.7. Error handling

	7. IPR
	8. Acknowledgements
	9. References

