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1. Introduction
This document describes the “PQXDH” (or “Post-Quantum Extended Diffie-
Hellman”) key agreement protocol. PQXDH establishes a shared secret key
between two parties who mutually authenticate each other based on public keys.
PQXDH provides post-quantum forward secrecy and a form of cryptographic
deniability but still relies on the hardness of the discrete log problem for mutual
authentication in this revision of the protocol.

PQXDH is designed for asynchronous settings where one user (“Bob”) is offline
but has published some information to a server. Another user (“Alice”) wants to
use that information to send encrypted data to Bob, and also establish a shared
secret key for future communication.

2. Preliminaries
2.1. PQXDH parameters
An application using PQXDH must decide on several parameters:

Name Definition
curve A Montgomery curve for which XEdDSA [1] is specified, at

present this is one of curve25519 or curve448
hash A 256 or 512-bit hash function (e.g. SHA-256 or SHA-512)
info An ASCII string identifying the application with a minimum

length of 8 bytes
pqkem A post-quantum key encapsulation mechanism that has

IND-CCA post-quantum security (e.g. Crystals-Kyber-1024
[2])

aead A scheme for authenticated encryption with associated data
that has IND-CPA and INT-CTXT post-quantum security

EncodeEC A function that encodes a curve public key into a byte
sequence

DecodeEC A function that decodes a byte sequence into a curve public
key and is the inverse of EncodeEC

EncodeKEM A function that encodes a pqkem public key into a byte
sequence

DecodeKEM A function that decodes a byte sequence into a pqkem public
key and is the inverse of EncodeKEM

For example, an application could choose curve as curve25519, hash as SHA-512,
info as “MyProtocol”, and pqkem as CRYSTALS-KYBER-1024.

The ranges of all encoding functions must be pairwise disjoint.
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The recommended implementation of EncodeEC consists of a single-byte constant
representation of curve followed by little-endian encoding of the u-coordinate
as specified in [3]. The single-byte representation of curve is defined by the
implementer. Similarly the recommended implementation of DecodeEC reads the
first byte to determine the parameter curve. If the first byte does not represent
a recognized curve, the function fails. Otherwise it applies the little-endian
decoding of the u-coordinate for curve as specified in [3].

The recommended implementation of EncodeKEM consists of a single-byte
constant representation of pqkem followed by the encoding of the pqkem public
key specified by pqkem. The single-byte representation of pqkem is defined by
the implementer. Similarly the recommended implementation of DecodeKEM
reads the first byte to determine the parameter pqkem. If the first byte does
not represent a recognized key encapsulation mechanism, the function fails.
Otherwise it applies the decoding specified by the selected key encapsulation
mechanism.

2.2. Cryptographic notation
Throughout this document, all public keys have a corresponding private key, but
to simplify descriptions we will identify key pairs by the public key and assume
that the corresponding private key can be accessed by the key owner.

This document will use the following notation:

• The concatenation of byte sequences X and Y is X || Y .

• DH(PK1, PK2) represents a byte sequence which is the shared secret
output from an Elliptic Curve Diffie-Hellman function involving the key
pairs represented by public keys PK1 and PK2. The Elliptic Curve Diffie-
Hellman function will be either the X25519 or X448 function from [3],
depending on the curve parameter.

• Sig(PK, M, Z) represents the byte sequence that is a curve XEdDSA
signature on the byte sequence M which was created by signing M with
PK ’s corresponding private key and using 64 bytes of randomness Z. This
signature verifies with public key PK. The signing and verification functions
for XEdDSA are specified in [1].

• KDF(KM) represents 32 bytes of output from the HKDF algorithm [4]
using hash with inputs:

– HKDF input key material = F || KM, where KM is an input byte
sequence containing secret key material, and F is a byte sequence
containing 32 0xFF bytes if curve is curve25519, and 57 0xFF bytes
if curve is curve448. As in in XEdDSA [1], F ensures that the first
bits of the HKDF input key material are never a valid encoding of a
scalar or elliptic curve point.
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– HKDF salt = A zero-filled byte sequence with length equal to the
hash output length, in bytes.

– HKDF info = The concatenation of string representations of the
4 PQXDH parameters info, curve, hash, and pqkem into a single string
separated with ‘_’ such as “MyProtocol_CURVE25519_SHA-512_CRYSTALS-KYBER-1024”.
The string representations of the PQXDH parameters are defined by
the implementer.

• (CT, SS) = PQKEM-ENC(PK) represents a tuple of the byte sequence
that is the KEM ciphertext, CT, output by the algorithm pqkem together
with the shared secret byte sequence SS encapsulated by the ciphertext
using the public key PK.

• PQKEM-DEC(PK, CT) represents the shared secret byte sequence SS
decapsulated from a pqkem ciphertext using the private key counterpart of
the public key PK used to encapsulate the ciphertext CT.

2.3. Roles
The PQXDH protocol involves three parties: Alice, Bob, and a server.

• Alice wants to send Bob some initial data using encryption, and also
establish a shared secret key which may be used for bidirectional commu-
nication.

• Bob wants to allow parties like Alice to establish a shared key with him
and send encrypted data. However, Bob might be offline when Alice
attempts to do this. To enable this, Bob has a relationship with some
server.

• The server can store messages from Alice to Bob which Bob can later
retrieve. The server also lets Bob publish some data which the server
will provide to parties like Alice. The amount of trust placed in the server
is discussed in Section 4.9.

In some systems the server role might be divided between multiple entities, but
for simplicity we assume a single server that provides the above functions for
Alice and Bob.
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2.4. Elliptic Curve Keys
PQXDH uses the following elliptic curve public keys:

Name Definition
IKA Alice’s identity key
IKB Bob’s identity key
EKA Alice’s ephemeral key
SPKB Bob’s signed prekey
(OPKB

1, OPKB
2, . . . ) Bob’s set of one-time prekeys

The elliptic curve public keys used within a PQXDH protocol run must either
all be in curve25519 form, or they must all be in curve448 form, depending on
the curve parameter [3].

Each party has a long-term identity elliptic curve public key (IKA for Alice, IKB
for Bob).

Bob also has a signed prekey SPKB, which he changes periodically and signs
each time with IKB, and a set of one-time prekeys (OPKB

1, OPKB
2, . . . ), which

are each used in a single PQXDH protocol run. For each signed prekey or
one-time prekey, K, that Bob generates, he also computes an identifier, denoted
IdEC(K), that uniquely identifies this key on Bob’s device. (“Prekeys” are so
named because they are essentially protocol messages which Bob publishes to
the server, along with their corresponding identifiers, prior to Alice beginning
the protocol run.) These keys will be uploaded to the server as described in
Section 3.2.

During each protocol run, Alice generates a new ephemeral key pair with public
key EKA.

2.5. Post-Quantum Key Encapsulation Keys
PQXDH uses the following post-quantum key encapsulation public keys:

Name Definition
PQSPKB Bob’s signed last-resort pqkem prekey
(PQOPKB

1, PQOPKB
2, . . . ) Bob’s set of signed one-time pqkem prekeys

The pqkem public keys used within a PQXDH protocol run must all use the
same pqkem parameter.

Bob has a signed last-resort post-quantum prekey PQSPKB, which he changes
periodically and signs each time with IKB, and a set of signed one-time prekeys
(PQOPKB

1, PQOPKB
2, . . . ) which are also signed with IKB and each used in
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a single PQXDH protocol run. For each last-resort or ephemeral KEM key, K,
that Bob generates, he also computes an identifier, denoted IdKEM(K), that
uniquely identifies this key on Bob’s device. These keys and their corresponding
identifiers will be uploaded to the server as described in Section 3.2. The name
“last-resort” refers to the fact that the last-resort prekey is only used when
one-time pqkem prekeys are not available. This can happen when the number
of prekey bundles downloaded for Bob exceeds the number of one-time pqkem
prekeys Bob has uploaded (see Section 3 for details about the role of the server).
An implementation should provide Bob a way to identify whether a pqkem public
key corresponds to a one-time pqkem key or a last-resort pqkem key.
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3. The PQXDH protocol
3.1. Overview
PQXDH has three phases:

1. Bob publishes his elliptic curve identity key, elliptic curve prekeys, and
pqkem prekeys to a server.

2. Alice fetches a “prekey bundle” from the server, and uses it to send an
initial message to Bob.

3. Bob receives and processes Alice’s initial message.

The following sections explain these phases.

3.2. Publishing keys
Bob generates a sequence of 64-byte random values ZSPK, ZPQSPK, Z1, Z2, . . .
and publishes a set of keys to the server containing:

• Bob’s curve identity key IKB
• Bob’s signed curve prekey and its identifier (SPKB, IdEC(SPKB))
• Bob’s signature on the curve prekey Sig(IKB, EncodeEC(SPKB), ZSPK)
• Bob’s signed last-resort pqkem prekey and its identifier (PQSPKB,

IdKEM(PQSPKB))
• Bob’s signature on the pqkem prekey Sig(IKB, EncodeKEM(PQSPKB),

ZPQSPK)
• A set of Bob’s one-time curve prekeys (OPKB

1, OPKB
2, OPKB

3, . . . )
along with their identifiers (IdEC(OPKB

1), IdEC(OPKB
2), IdEC(OPKB

3),
. . . )

• A set of Bob’s signed one-time pqkem prekeys (PQOPKB
1, PQOPKB

2,
PQOPKB

3, . . . ) along with their identifiers (IdKEM(PQOPKB
1),

IdKEM(PQOPKB
2), IdKEM(PQOPKB

3), . . . )
• The set of Bob’s signatures on the signed one-time pqkem prekeys (Sig(IKB,

EncodeKEM(PQOPKB
1), Z1), Sig(IKB, EncodeKEM(PQOPKB

2), Z2),
Sig(IKB, EncodeKEM(PQOPKB

3), Z3), . . . )

Bob only needs to upload his identity key to the server once. However, Bob may
upload new one-time prekeys at other times (e.g. when the server informs Bob
that the server’s store of one-time prekeys is getting low).

For both the signed curve prekey and the signed last-resort pqkem prekey, Bob
will upload a new prekey along with its signature using IKB at some interval
(e.g. once a week or once a month). The new signed prekey and its signatures
will replace the previous values.

After uploading a new pair of signed curve and signed last-resort pqkem prekeys,
Bob may keep the private key corresponding to the previous pair around for
some period of time to handle messages using it that may have been delayed
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in transit. Eventually, Bob should delete this private key for forward secrecy
(one-time prekey private keys will be deleted as Bob receives messages using
them; see Section 3.4).

3.3. Sending the initial message
To perform a PQXDH key agreement with Bob, Alice contacts the server and
fetches a “prekey bundle” containing the following values:

• Bob’s curve identity key IKB
• Bob’s signed curve prekey with its identifier (SPKB, IdEC(SPKB))
• Bob’s signature on the curve prekey Sig(IKB, EncodeEC(SPKB), ZSPK)
• One of either Bob’s signed one-time pqkem prekey PQOPKB

n or Bob’s last-
resort signed pqkem prekey PQSPKB if no signed one-time pqkem prekey
remains. Call this key PQPKB. The bundle also contains IdKEM(PQPKB)

• Bob’s signature on the pqkem prekey Sig(IKB, EncodeKEM(PQPKB),
ZPQPK)

• (Optionally) Bob’s one-time curve prekey OPKB
n and its identifier

IdEC(OPKB
n)

The server should provide one of Bob’s curve one-time prekeys if one exists and
then delete it. If all of Bob’s curve one-time prekeys on the server have been
deleted, the bundle will not contain a one-time curve prekey element.

The server should prefer to provide one of Bob’s pqkem one-time signed prekeys
PQOPKB

n if one exists and then delete it. If all of Bob’s pqkem one-time signed
prekeys on the server have been deleted, the bundle will instead contain Bob’s
pqkem last-resort signed prekey PQSPKB.

Alice verifies the signatures on the prekeys. If any signature check fails, Alice
aborts the protocol. Otherwise, if all signature checks pass, Alice then generates
an ephemeral curve key pair with public key EKA. Alice additionally generates
a pqkem encapsulated shared secret:

(CT, SS) = PQKEM-ENC(PQPKB)
shared secret SS
ciphertext CT

If the bundle does not contain a curve one-time prekey, she calculates:

DH1 = DH(IKA, SPKB)
DH2 = DH(EKA, IKB)
DH3 = DH(EKA, SPKB)
SK = KDF(DH1 || DH2 || DH3 || SS)

If the bundle does contain a curve one-time prekey, the calculation is modified
to include an additional DH :

DH4 = DH(EKA, OPKB)
SK = KDF(DH1 || DH2 || DH3 || DH4 || SS)
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After calculating SK, Alice deletes her ephemeral private key, the DH outputs
and the shared secret SS.

Alice then calculates an “associated data” byte sequence AD that contains
identity information for both parties:

AD = EncodeEC(IKA) || EncodeEC(IKB)

If pqkem does not incorporate PQPKB into the ciphertext, Alice must also
append EncodeKEM(PQPKB) to AD (see the discussion in Section 4.12). Alice
may optionally append additional information to AD, such as Alice and Bob’s
usernames, certificates, or other identifying information.

Alice then sends Bob an initial message containing:

• Alice’s identity key IKA
• Alice’s ephemeral key EKA
• The pqkem ciphertext CT encapsulating SS for PQPKB
• Identifiers stating which of Bob’s prekeys Alice used
• An initial ciphertext encrypted with some AEAD encryption scheme [5]

using AD as associated data and using an encryption key which is either
SK or the output from some cryptographic PRF keyed by SK.

The initial ciphertext is typically the first message in some post-PQXDH com-
munication protocol. In other words, this ciphertext typically has two roles,
serving as the first message within some post-PQXDH protocol, and as part of
Alice’s PQXDH initial message.

The initial message must be encoded in an unambiguous format to avoid confusion
of the message items by the recipient.

After sending this, Alice deletes the ciphertext CT and may continue using SK
or keys derived from SK within the post-PQXDH protocol for communication
with Bob, subject to the security considerations discussed in Section 4.

3.4. Receiving the initial message
Upon receiving Alice’s initial message, Bob retrieves Alice’s identity key and
ephemeral key from the message. Bob also loads his identity private key and
uses the key identifiers to load the private key(s) corresponding to the signed
prekeys, one-time prekeys, and KEM key Alice used.

Using these keys, Bob calculates PQKEM-DEC(PQPKB, CT) as the shared
secret SS and repeats the DH and KDF calculations from the previous section
to derive SK, and then deletes the DH values and SS values.

Bob then constructs the AD byte sequence using IKA and IKB as described in
the previous section. Finally, Bob attempts to decrypt the initial ciphertext
using SK and AD. If the initial ciphertext fails to decrypt, then Bob aborts the
protocol and deletes SK.
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If the initial ciphertext decrypts successfully, the protocol is complete for Bob.
For forward secrecy, Bob deletes the ciphertext and any one-time prekey private
key that was used. Bob may then continue using SK or keys derived from SK
within the post-PQXDH protocol for communication with Alice subject to the
security considerations discussed in Section 4.

4. Security considerations
The security of the composition of X3DH [6] with the Double Ratchet [7] was for-
mally studied in [8] and proven secure under the Gap Diffie-Hellman assumption
(GapDH)[9] while making simplifying assumptions that avoid modeling the reuse
of IKB for both key agreement and signing. PQXDH composed with the Double
Ratchet retains this security against an adversary without access to a quantum
computer, but strengthens the security of the initial handshake to require the
solution of both GapDH and Module-LWE [10].

In [11] PQXDH has been formally analyzed in the symbolic model with ProVerif
[12] and in the computational model with CryptoVerif [13]. With ProVerif,
the authors prove both authentication and secrecy in the symbolic model and
enumerate the precise conditions under which the attacker can break these
properties. These security properties notably imply forward secrecy, resistance
to harvest now decrypt later attacks, resistance to key compromise impersonation,
and session independence.

Using the CryptoVerif prover, the authors prove the computational secrecy and
authentication of any completed key exchange under the GapDH assumption
for the X25519 curve, the UF-CMA assumption on XEdDSA (assuming no key
reuse between XEdDSA and X25519), the hash function modeled as a random
oracle, and the IND-CPA+INT-CTXT assumptions for the AEAD. Moreover,
they also show forward secrecy when the signature was UF-CMA secure at the
time the key exchange took place, assuming post-quantum IND-CCA security
for the KEM, modelling the hash function as a PRF, and IND-CPA+INT-CTXT
security for the AEAD.

For both PQXDH and X3DH, however, a full proof of security under a joint
assumption of GapDH and UF-CMA security for X25519 and XEdDSA is still
needed.

The remainder of this section discusses an incomplete list of further security
considerations.

4.1. Authentication
Before or after a PQXDH key agreement, the parties may compare their identity
public keys IKA and IKB through some authenticated channel. For example,
they may compare public key fingerprints manually, or by scanning a QR code.
Methods for doing this are outside the scope of this document.

11



Authentication in PQXDH is not quantum-secure. In the presence of an active
quantum adversary, the parties receive no cryptographic guarantees as to who
they are communicating with. Post-quantum secure deniable mutual authen-
tication is an open research problem which we hope to address with a future
revision of this protocol.

If authentication is not performed, the parties receive no cryptographic guarantee
as to who they are communicating with.

4.2. Protocol replay
If Alice’s initial message doesn’t use a one-time prekey, it may be replayed to
Bob and he will accept it. This could cause Bob to think Alice had sent him the
same message (or messages) repeatedly.

To mitigate this, a post-PQXDH protocol may wish to quickly negotiate a new
encryption key for Alice based on fresh random input from Bob. This is the
typical behavior of Diffie-Hellman-based ratcheting protocols [7].

Bob could attempt other mitigations, such as maintaining a blacklist of ob-
served messages, or replacing old signed prekeys more rapidly. Analyzing these
mitigations is beyond the scope of this document.

4.3. Replay and key reuse
Another consequence of the replays discussed in the previous section is that a
successfully replayed initial message would cause Bob to derive the same SK in
different protocol runs.

For this reason, any post-PQXDH protocol that uses SK to derive encryption
keys MUST take measures to prevent catastrophic key reuse. For example,
Bob could use a DH-based ratcheting protocol to combine SK with a freshly
generated DH output to get a randomized encryption key [7].

4.4. Deniability
Informally, cryptographic deniability means that a protocol neither gives its
participants a publishable cryptographic proof of the contents of their communi-
cation nor proof of the fact that they communicated. PQXDH, like X3DH, aims
to provide both Alice and Bob deniablilty that they communicated with each
other in a context where a “judge” who may have access to one or more party’s
secret keys is presented with a transcript allegedly created by communication
between Alice and Bob.

We focus on offline deniability because if either party is collaborating with a
third party during protocol execution, they will be able to provide proof of their
communication to such a third party. This limitation on “online” deniability
appears to be intrinsic to the asynchronous setting [14].
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PQXDH has some forms of cryptographic deniability. Motivated by the goals
of X3DH, Brendel et al. [15] introduce a notion of 1-out-of-2 deniability for
semi-honest parties and a “big brother” judge with access to all parties’ secret
keys. Since either Alice or Bob can create a fake transcript using only their own
secret keys, PQXDH has this deniability property. Vatandas, et al. [16] prove
that X3DH is deniable in a different sense subject to certain “Knowledge of
Diffie-Hellman Assumptions”. PQXDH is deniable in this sense for Alice, subject
to the same assumptions, and we conjecture that it is deniable for Bob subject
to an additional Plaintext Awareness (PA) assumption for pqkem. We note that
Kyber uses a variant of the Fujisaki-Okamoto transform with implicit rejection
[17] and is therefore not PA as is. However, in PQXDH, an AEAD ciphertext
encrypted with the session key is always sent along with the Kyber ciphertext.
This should offer the same guarantees as PA. We encourage the community to
investigate the precise deniability properties of PQXDH.

These assertions all pertain to deniability in the classical setting. As discussed
in [18] we expect that for future revisions of this protocol (that provide post-
quantum mutual authentication) assertions about deniability against semi-honest
quantum advsersaries will hold. Deniability in the face of malicious quantum
adversaries requires further research.

4.5. Signatures
It might be tempting to omit the prekey signature after observing that mutual
authentication and forward secrecy are achieved by the DH calculations. However,
this would allow a “weak forward secrecy” attack: A malicious server could
provide Alice a prekey bundle with forged prekeys, and later compromise Bob’s
IKB to calculate SK.

Alternatively, it might be tempting to replace the DH-based mutual authenti-
cation (i.e. DH1 and DH2) with signatures from the identity keys. However,
this reduces deniability, increases the size of initial messages, and increases the
damage done if ephemeral or prekey private keys are compromised, or if the
signature scheme is broken.

4.6. Key compromise
Compromise of a party’s private keys has a disastrous effect on security, though
the use of ephemeral keys and prekeys provides some mitigation.

Compromise of a party’s identity private key allows impersonation of that party
to others. Compromise of a party’s prekey private keys may affect the security
of older or newer SK values, depending on many considerations.

A full analysis of all possible compromise scenarios is outside the scope of this
document, however a partial analysis of some plausible scenarios is below:

• If either an elliptic curve one-time prekey (OPKB) or a post-quantum key
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encapsulation one-time prekey (PQOPKB) are used for a protocol run and
deleted as specified, then a compromise of Bob’s identity key and prekey
private keys at some future time will not compromise the older SK.

• If one-time prekeys were not used for a protocol run, then a compromise of
the private keys for IKB, SPKB, and PQSPKB from that protocol run would
compromise the SK that was calculated earlier. Frequent replacement of
signed prekeys mitigates this, as does using a post-PQXDH ratcheting
protocol which rapidly replaces SK with new keys to provide fresh forward
secrecy [7].

• Compromise of prekey private keys may enable attacks that extend into
the future, such as passive calculation of SK values, and impersonation
of arbitrary other parties to the compromised party (“key-compromise
impersonation”). These attacks are possible until the compromised party
replaces his compromised prekeys on the server (in the case of passive
attack); or deletes his compromised signed prekey’s private key (in the
case of key-compromise impersonation).

4.7. Passive quantum adversaries
PQXDH is designed to prevent “harvest now, decrypt later” attacks by ad-
versaries with access to a quantum computer capable of computing discrete
logarithms in curve. While this security is primarily derived from pqkem, it also
requires that aead provides post-quantum IND-CPA and INT-CTXT security.
There is great uncertainty in estimating post-quantum security strength of cryp-
tosystems, making it challenging to define this requirement precisely. Taking
the NIST evaluation criteria for post-quantum cryptography submissions [19]
as a guide, it places a key-search attack on AES256 at its highest security level.
While this does not correspond exactly to our security requirements, it suggests
that using an appropriate AEAD mode of AES256 will suffice. We note some
particular security properties of PQXDH in this setting.

• If an attacker has recorded the public information and the message from
Alice to Bob, even access to a quantum computer will not compromise SK.

• If a post-quantum key encapsulation one-time prekey (PQOPKB) is used
for a protocol run and deleted as specified then compromise after deletion
and access to a quantum computer at some future time will not compromise
the older SK.

• If post-quantum one-time prekeys were not used for a protocol run, then
access to a quantum computer and a compromise of the private key for
PQSPKB from that protocol run would compromise the SK that was
calculated earlier. Frequent replacement of signed prekeys mitigates this,
as does using a post-PQXDH ratcheting protocol which rapidly replaces
SK with new keys to provide fresh forward secrecy [7].
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4.8. Active quantum adversaries
PQXDH is not designed to provide protection against active quantum attackers.
An active attacker with access to a quantum computer capable of computing
discrete logarithms in curve can compute DH(PK1, PK2) and Sig(PK, M, Z) for
all elliptic curve keys PK1, PK2, and PK. This allows an attacker to impersonate
Alice by using the quantum computer to compute the secret key corresponding
to PKA then continuing with the protocol. A malicious server with access to
such a quantum computer could impersonate Bob by generating new key pairs
PQSPK’B and PQOPK’B, computing the secret key corresponding to PKB, then
using PKB to sign the newly generated post-quantum KEM keys and delivering
these attacker-generated keys in place of Bob’s post-quantum KEM key when
Alice requests a prekey bundle.

It is tempting to consider adding a post-quantum identity key that Bob could
use to sign the post-quantum prekeys. This would prevent the malicious server
attack described above and provide Alice a cryptographic guarantee that she is
communicating with Bob, but it does not provide mutual authentication. Bob
does not have any cryptographic guarantee about who he is communicating with.
The post-quantum KEM and signature schemes being standardized by NIST [20]
do not provide a mechanism for post-quantum deniable mutual authentication,
although this can be achieved through the use of a post-quantum ring signature
or designated verifier signature [15], [18]. We urge the community to work toward
standardization of these or other mechanisms that will allow deniable mutual
authentication.

4.9. Server trust
A malicious server could cause communication between Alice and Bob to fail
(e.g. by refusing to deliver messages).

If Alice and Bob authenticate each other as in Section 4.1, then the only additional
attack available to the server is to refuse to hand out one-time prekeys, causing
forward secrecy for SK to depend on the signed prekey’s lifetime (as analyzed in
Section 4.6).

This reduction in initial forward secrecy could also happen if one party maliciously
drains another party’s one-time prekeys, so the server should attempt to prevent
this (e.g. with rate limits on fetching prekey bundles).

4.10. Identity binding
Authentication as in Section 4.1 does not necessarily prevent an “identity mis-
binding” or “unknown key share” attack.

This results when an attacker (“Charlie”) falsely presents Bob’s identity key
fingerprint to Alice as his (Charlie’s) own, and then either forwards Alice’s initial
message to Bob, or falsely presents Bob’s contact information as his own. The

15



effect of this is that Alice thinks she is sending an initial message to Charlie
when she is actually sending it to Bob.

To make this more difficult the parties can include more identifying information
into AD, or hash more identifying information into the fingerprint, such as
usernames, phone numbers, real names, or other identifying information. Charlie
would be forced to lie about these additional values, which might be difficult.

However, there is no way to reliably prevent Charlie from lying about additional
values, and including more identity information into the protocol often brings
trade-offs in terms of privacy, flexibility, and user interface. A detailed analysis
of these trade-offs is beyond the scope of this document.

4.11. Risks of weak randomness sources
In addition to concerns about the generation of the keys themselves, the security
of the PQKEM shared secret relies on the random source available to Alice’s
machine at the time of running the PQKEM-ENC operation. This leads to
a situation similar to what we face with a Diffie-Hellman exchange. For both
Diffie-Hellman and Kyber, if Alice has weak entropy then the resulting shared
secret will have low entropy when conditioned on Bob’s public key. Thus both
the classical and post-quantum security of SK depend on the strength of Alice’s
random source.

Kyber hashes Bob’s public key with Alice’s random bits to generate the shared
secret, making Bob’s key contributory, as it is with a Diffie-Hellman key exchange.
This does not reduce the dependence on Alice’s entropy source, as described
above, but it does limit Alice’s ability to control the post-quantum shared secret.
Not all KEMs make Bob’s key contributory and this is a property to consider
when selecting pqkem.

4.12 Preventing KEM Re-encapsulation Attacks
Typically, when using a KEM that relies one a public key encryption to encrypt
a fresh shared secret, the fresh shared secret is not tied to the public key. A
shared secret corresponding to the encapsulation of a given compromised public
key can easily be re-encapsulated against another uncompromised public key.
IND-CCA security of the KEM does not prevent this behavior.

For a KEM for which this attack is possible, as soon as one PQPK is compromised,
an attacker can force all initiators to use this compromised PQPK, and by always
reencapsulating the shared secret against another fresh uncompromised PQPK,
make the responder believe that nothing is going awry. This notably breaks the
usual notion of session independence: compromising one PQPK of a responder
can in fact impact the security of other sessions of the responder that should be
using distinct and independent PQPKs.

The Kyber KEM incorporates the KEM public key into the generation of the
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shared secret, preventing this attack. For a generic IND-CCA KEM, this attack
can be prevented by adding PQPKB to AD for the initial message. See [11] for
more details about this attack and mitigations.

4.13 Key Identifiers
The public key identifiers are not security critical, notably as the actual values
of the keys are signed or used within the AD. Note however that identifiers that
would collide too often would cause decryption failures on the responder side, as
the responder would try to complete the key exchange with the wrong public
key, which would fail.

An application can choose to use public keys as key identifiers, but may choose
an identifier with a smaller representation to reduce message sizes, provided that
collisions are unlikely. Possible implementations include a hash of the public key,
a random value, or sequentially generated values starting from a random offset.

5. IPR
This document is hereby placed in the public domain.
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