The Double Ratchet Algorithm

Trevor Perrin (editor) Moxie Marlinspike

Revision 1, 2016-11-20

Contents
1. Introduction

2. Overview
2.1. KDF chains . . . . . . . . . . ...
2.2. Symmetric-key ratchet . . . . ... .. o000
2.3. Diffie-Hellman ratchet . . . . . . . . . .. ... ... .. ......
2.4. Double Ratchet . . . . . . .. ... ... ... ... ...,
2.6. Out-of-order messages . . . . . . . . . . .. e

3. Double Ratchet
3.1. External functions . . . . . . . .. ... ... .
3.2. State variables . . . . . . .. ...
3.3. Initialization . . . . . . . . .. ...
3.4. Encrypting messages . . . . . . ... ... oL
3.5. Decrypting messages . . . . . . . ... Lo

4. Double Ratchet with header encryption
4.1, 0verview . . . ..o e
4.2. External functions . . . . . .. ... oL
4.3. State variables . . . . . . ... ..
4.4. Initialization . . . . . . .. ...
4.5. Encrypting messages . . . . . . . . ...
4.6. Decrypting messages . . . . . . . ... ..o

5. Implementation considerations
5.1. Integration with X3DH . . . . . ... ... ... .. ...
5.2. Recommended cryptographic algorithms . . . . . ... ... ...

6. Security considerations
6.1. Secure deletion . . . . .. ... oL
6.2. Recovery from compromise . . . . . .. ... .. ... L.
6.3. Cryptanalysis and ratchet publickeys . . . . .. .. ... ... ..

22
22
26
26
26
27
28

29
29
30



6.4. Deletion of skipped message keys . . . . . ... ... ... ....
6.5. Deferring new ratchet key generation . . .. ... ... ... ...
6.6. Truncating authentication tags . . . . . . . . ... ... ... ...
6.7. Implementation fingerprinting . . . . . . ... ...

7. IPR
8. Acknowledgements

9. References

33

33

33



1. Introduction

The Double Ratchet algorithm is used by two parties to exchange encrypted
messages based on a shared secret key. Typically the parties will use some
key agreement protocol (such as X3DH [1]) to agree on the shared secret key.
Following this, the parties will use the Double Ratchet to send and receive
encrypted messages.

The parties derive new keys for every Double Ratchet message so that earlier keys
cannot be calculated from later ones. The parties also send Diffie-Hellman public
values attached to their messages. The results of Diffie-Hellman calculations
are mixed into the derived keys so that later keys cannot be calculated from
earlier ones. These properties gives some protection to earlier or later encrypted
messages in case of a compromise of a party’s keys.

The Double Ratchet and its header encryption variant are presented below, and
their security properties are discussed.

2. Overview

2.1. KDF chains

A KDF chain is a core concept in the Double Ratchet algorithm.

We define a KDF as a cryptographic function that takes a secret and random
KDF key and some input data and returns output data. The output data is
indistinguishable from random provided the key isn’t known (i.e. a KDF satisfies
the requirements of a cryptographic “PRF”). If the key is not secret and random,
the KDF should still provide a secure cryptographic hash of its key and input
data. The HMAC and HKDF constructions, when instantiated with a secure
hash algorithm, meet the KDF definition [2], [3].

We use the term KDF chain when some of the output from a KDF is used as
an output key and some is used to replace the KDF key, which can then be
used with another input. The below diagram represents a KDF chain processing
three inputs and producing three output keys:



A KDF chain has the following properties (using terminology adapted from [4]):

e Resilience: The output keys appear random to an adversary without
knowledge of the KDF keys. This is true even if the adversary can control
the KDF inputs.

e Forward security: Output keys from the past appear random to an
adversary who learns the KDF key at some point in time.

e Break-in recovery: Future output keys appear random to an adversary
who learns the KDF key at some point in time, provided that future inputs
have added sufficient entropy.

In a Double Ratchet session between Alice and Bob each party stores a KDF
key for three chains: a root chain, a sending chain, and a receiving chain
(Alice’s sending chain matches Bob’s receiving chain, and vice versa).

As Alice and Bob exchange messages they also exchange new Diffie-Hellman



public keys, and the Diffie-Hellman output secrets become the inputs to the
root chain. The output keys from the root chain become new KDF keys for the
sending and receiving chains. This is called the Diffie-Hellman ratchet.

The sending and receiving chains advance as each message is sent and received.
Their output keys are used to encrypt and decrypt messages. This is called the
symmetric-key ratchet

The next sections explain the symmetric-key and Diffie-Hellman ratchets in more
detail, then show how they are combined into the Double Ratchet.

2.2. Symmetric-key ratchet

Every message sent or received is encrypted with a unique message key. The
message keys are output keys from the sending and receiving KDF chains. The
KDF keys for these chains will be called chain keys.

The KDF inputs for the sending and receiving chains are constant, so these
chains don’t provide break-in recovery. The sending and receiving chains just
ensure that each message is encrypted with a unique key that can be deleted
after encryption or decryption. Calculating the next chain key and message key
from a given chain key is a single ratchet step in the symmetric-key ratchet.
The below diagram shows two steps:




Because message keys aren’t used to derive any other keys, message keys may
be stored without affecting the security of other message keys. This is useful for
handling lost or out-of-order messages (see Section 2.6).

2.3. Diffie-Hellman ratchet

If an attacker steals one party’s sending and receiving chain keys, the attacker can
compute all future message keys and decrypt all future messages. To prevent this,
the Double Ratchet combines the symmetric-key ratchet with a DH ratchet
which updates chain keys based on Diffie-Hellman outputs.

To implement the DH ratchet, each party generates a DH key pair (a Diffie-
Hellman public key and private key) which becomes their current ratchet key
pair. Every message from either party begins with a header which contains the
sender’s current ratchet public key. When a new ratchet public key is received
from the remote party, a DH ratchet step is performed which replaces the
local party’s current ratchet key pair with a new key pair.

This results in a “ping-pong” behavior as the parties take turns replacing
ratchet key pairs. An eavesdropper who briefly compromises one of the parties
might learn the value of a current ratchet private key, but that private key
will eventually be replaced with an uncompromised one. At that point, the
Diffie-Hellman calculation between ratchet key pairs will define a DH output
unknown to the attacker.

The following diagrams show how the DH ratchet derives a shared sequence of
DH outputs.

Alice is initialized with Bob’s ratchet public key. Alice’s ratchet public key isn’t
yet known to Bob. As part of initialization Alice performs a DH calculation
between her ratchet private key and Bob’s ratchet public key:

Alice Bob

______________________ - Private key




Alice’s initial messages advertise her ratchet public key. Once Bob receives one
of these messages, Bob performs a DH ratchet step: He calculates the DH output
between Alice’s ratchet public key and his ratchet private key, which equals
Alice’s initial DH output. Bob then replaces his ratchet key pair and calculates
a new DH output:

Alice Bob

J-----mmmmm oo - - - Private key

Private key - ——————————————————————

Bob’s DH ratchet step ?

Bob’s new ratchet key pair



Messages sent by Bob advertise his new public key. Eventually, Alice will receive
one of Bob’s messages and perform a DH ratchet step, replacing her ratchet key
pair and deriving two DH outputs, one that matches Bob’s latest and a new one:

Alice Bob

- Private key

- Private key

? Alice’s DH ratchet step



Messages sent by Alice advertise her new public key. Eventually, Bob will receive
one of these messages and perform a second DH ratchet step, and so on:

Alice Bob

- Private key

A

Private key - ——————————————————————

Bob's DH ratchet step

- Private key



The DH outputs generated during each DH ratchet step are used to derive new
sending and receiving chain keys. The below diagram revisits Bob’s first ratchet
step. Bob uses his first DH output to derive a receiving chain that matches
Alice’s sending chain. Bob uses the second DH output to derive a new sending
chain:

Alice Bob

Rl -
’—*- = ecsngaran + o1

Private key - ---------------------- >
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As the parties take turns performing DH ratchet steps, they take turns introducing
new sending chains:

Alice Bob

- Private key
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However, the above picture is a simplification. Instead of taking the chain
keys directly from DH outputs, the DH outputs are used as KDF inputs to a
root chain, and the KDF outputs from the root chain are used as sending and
receiving chain keys. Using a KDF chain here improves resilience and break-in
recovery.

So a full DH ratchet step consists of updating the root KDF chain twice, and
using the KDF output keys as new receiving and sending chain keys:
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2.4. Double Ratchet

Combining the symmetric-key and DH ratchets gives the Double Ratchet:

e When a message is sent or received, a symmetric-key ratchet step is applied
to the sending or receiving chain to derive the message key.

e When a new ratchet public key is received, a DH ratchet step is performed
prior to the symmetric-key ratchet to replace the chain keys.

In the below diagram Alice has been initialized with Bob’s ratchet public key
and a shared secret which is the initial root key. As part of initialization Alice
generates a new ratchet key pair, and feeds the DH output to the root KDF to
calculate a new root key (RK) and sending chain key (CK):

Ratchet Root Sending Receiving

T<--- Old keys can be deleted

When Alice sends her first message A1, she applies a symmetric-key ratchet step
to her sending chain key, resulting in a new message key (message keys will be
labelled with the message they encrypt or decrypt). The new chain key is stored,
but the message key and old chain key can be deleted:

Ratchet Root Sending Receiving

r<—-_ Old keys can be deleted

Symmetric-key
ratchet
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If Alice next receives a response BI from Bob, it will contain a new ratchet
public key (Bob’s public keys are labelled with the message when they were first
received). Alice applies a DH ratchet step to derive new receiving and sending
chain keys. Then she applies a symmetric-key ratchet step to the receiving chain
to get the message key for the received message:

Ratchet Root Sending Receiving

]

A\

L ] RK ok

DH ratchet Symmetric-key ratchet

<---

\J
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Suppose Alice next sends a message A2, receives a message B2 with Bob’s old
ratchet public key, then sends messages A3 and A4. Alice’s sending chain will
ratchet three steps, and her receiving chain will ratchet once:

Ratchet Root Sending Receiving
r‘_—_
.
= AR [
3 steps
1 step

15



Suppose Alice then receives messages B3 and B/ with Bob’s next ratchet key,
then sends a message A5. Alice’s final state will be as follows:

Ratchet Root Sending Receiving
1
[ RK
0
€ - - -
g
- ‘ g
____BefoeBs | __ ____ T T _______
-
€ - - -
g
D RK
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2.6. Out-of-order messages

The Double Ratchet handles lost or out-of-order messages by including in each
message header the message’s number in the sending chain (N=0,1,2,...) and
the length (number of message keys) in the previous sending chain (PN). This
enables the recipient to advance to the relevant message key while storing skipped
message keys in case the skipped messages arrive later.

On receiving a message, if a DH ratchet step is triggered then the received PN
minus the length of the current receiving chain is the number of skipped messages
in that receiving chain. The received N is the number of skipped messages in
the new receiving chain (i.e. the chain after the DH ratchet).

If a DH ratchet step isn’t triggered, then the received N minus the length of the
receiving chain is the number of skipped messages in that chain.

For example, consider the message sequence from the previous section when
messages B2 and B3 are skipped. Message B4 will trigger Alice’s DH ratchet
step (instead of B&). Message B4 will have PN=2 and N=1. On receiving B/
Alice will have a receiving chain of length 1 (B1), so Alice will store message
keys for B2 and B3 so they can be decrypted if they arrive later:

Ratchet Root Sending Receiving
L RK

Before B4

1 Skipped message keys

*---
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3. Double Ratchet

3.1.

External functions

To instantiate the Double Ratchet requires defining the following functions. For
recommendations, see Section 5.2.

GENERATE_DH(): Returns a new Diffie-Hellman key pair.

DH(dh__pair, dh__pub): Returns the output from the Diffie-Hellman
calculation between the private key from the DH key pair dh_ pair and
the DH public key dh_pub. If the DH function rejects invalid public keys,
then this function may raise an exception which terminates processing.

KDF__RK(rk, dh__out): Returns a pair (32-byte root key, 32-byte chain
key) as the output of applying a KDF keyed by a 32-byte root key rk to a
Diffie-Hellman output dh__out.

KDF CK(ck): Returns a pair (32-byte chain key, 32-byte message key)
as the output of applying a KDF keyed by a 32-byte chain key ck to some
constant.

ENCRYPT(mk, plaintext, associated _data): Returns an AEAD
encryption of plaintert with message key mk [5]. The associated__data is
authenticated but is not included in the ciphertext. Because each message
key is only used once, the AEAD nonce may handled in several ways: fixed
to a constant; derived from mk alongside an independent AEAD encryption
key; derived as an additional output from KDF _CK(); or chosen randomly
and transmitted.

DECRYPT(mk, ciphertext, associated _data): Returns the AEAD
decryption of ciphertext with message key mk. If authentication fails, an
exception will be raised that terminates processing.

HEADER (dh__pair, pn, n): Creates a new message header containing
the DH ratchet public key from the key pair in dh_ pair, the previous chain
length pn, and the message number n. The returned header object contains
ratchet public key dh and integers pn and n.

CONCAT(ad, header): Encodes a message header into a parseable byte
sequence, prepends the ad byte sequence, and returns the result. If ad is
not guaranteed to be a parseable byte sequence, a length value should be
prepended to the output to ensure that the output is parseable as a unique
pair (ad, header).

A MAX__SKIP constant also needs to be defined. This specifies the maximum
number of message keys that can be skipped in a single chain. It should be set
high enough to tolerate routine lost or delayed messages, but low enough that a
malicious sender can’t trigger excessive recipient computation.

18



3.2. State variables

The following state variables are tracked by each party:
e DHs: DH Ratchet key pair (the “sending” or “self” ratchet key)
e DHr: DH Ratchet public key (the “received” or “remote” key)
e RK: 32-byte Root Key
e CKs, CKr: 32-byte Chain Keys for sending and receiving
e Ns, Nr: Message numbers for sending and receiving
e PN: Number of messages in previous sending chain

e MKSKIPPED: Dictionary of skipped-over message keys, indexed by
ratchet public key and message number. Raises an exception if too many
elements are stored.

In the Python code that follows, the state variables are accessed as members of
a state object.

3.3. Initialization

Prior to initialization both parties must use some key agreement protocol to
agree on a 32-byte shared secret key SK and Bob’s ratchet public key. These
values will be used to populate Alice’s sending chain key and Bob’s root key.
Bob’s chain keys and Alice’s receiving chain key will be left empty, since they
are populated by each party’s first DH ratchet step.

(This assumes Alice begins sending messages first, and Bob doesn’t send messages
until he has received one of Alice’s messages. To allow Bob to send messages
immediately after initialization Bob’s sending chain key and Alice’s receiving
chain key could be initialized to a shared secret. For the sake of simplicity we
won’t consider this further.)

Once Alice and Bob have agreed on SK and Bob’s ratchet public key, Alice calls
RatchetInitAlice() and Bob calls RatchetInitBob():

def RatchetInitAlice(state, SK, bob_dh_public_key):
state.DHs = GENERATE_DH()
state.DHr = bob_dh_public_key
state.RK, state.CKs = KDF_RK(SK, DH(state.DHs, state.DHr))
state.CKr = None
state.Ns = 0
state.Nr = 0
state.PN = 0
state.MKSKIPPED = {}
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def RatchetInitBob(state, SK, bob_dh_key_pair):
state.DHs = bob_dh_key_pair
state.DHr = None
state.RK = SK
state.CKs = None
state.CKr = None
state.Ns = 0
state.Nr = 0
state.PN = 0
state.MKSKIPPED = {}

3.4. Encrypting messages

RatchetEncrypt() is called to encrypt messages. This function performs a
symmetric-key ratchet step, then encrypts the message with the resulting mes-
sage key. In addition to the message’s plaintext it takes an AD byte sequence
which is prepended to the header to form the associated data for the underlying
AEAD encryption:

def RatchetEncrypt(state, plaintext, AD):
state.CKs, mk = KDF_CK(state.CKs)
header = HEADER(state.DHs, state.PN, state.Ns)
state.Ns += 1
return header, ENCRYPT(mk, plaintext, CONCAT(AD, header))

3.5. Decrypting messages

RatchetDecrypt() is called to decrypt messages. This function does the following:

e If the message corresponds to a skipped message key this function decrypts
the message, deletes the message key, and returns.

e Otherwise, if a new ratchet key has been received this function stores any
skipped message keys from the receiving chain and performs a DH ratchet
step to replace the sending and receiving chains.

e This function then stores any skipped message keys from the current
receiving chain, performs a symmetric-key ratchet step to derive the relevant
message key and next chain key, and decrypts the message.

If an exception is raised (e.g. message authentication failure) then the message
is discarded and changes to the state object are discarded. Otherwise, the
decrypted plaintext is accepted and changes to the state object are stored:

20



def RatchetDecrypt(state, header, ciphertext, AD):
plaintext = TrySkippedMessageKeys(state, header, ciphertext, AD)
if plaintext != None:
return plaintext
if header.dh != state.DHr:
SkipMessageKeys(state, header.pn)
DHRatchet (state, header)
SkipMessageKeys(state, header.n)
state.CKr, mk = KDF_CK(state.CKr)
state.Nr += 1
return DECRYPT (mk, ciphertext, CONCAT(AD, header))

def TrySkippedMessageKeys(state, header, ciphertext, AD):
if (header.dh, header.n) in state.MKSKIPPED:
mk = state.MKSKIPPED[header.dh, header.n]
del state.MKSKIPPED [header.dh, header.n]
return DECRYPT (mk, ciphertext, CONCAT(AD, header))
else:
return None

def SkipMessageKeys(state, until):
if state.Nr + MAX_SKIP < until:
raise Error()
if state.CKr != None:
while state.Nr < until:
state.CKr, mk = KDF_CK(state.CKr)
state.MKSKIPPED [state.DHr, state.Nr] = mk
state.Nr += 1

def DHRatchet(state, header):
state.PN = state.Ns
state.Ns = 0
state.Nr = 0
state.DHr = header.dh
state.RK, state.CKr = KDF_RK(state.RK, DH(state.DHs, state.DHr))
state.DHs = GENERATE_DH()
state.RK, state.CKs = KDF_RK(state.RK, DH(state.DHs, state.DHr))

21



4. Double Ratchet with header encryption

4.1. Overview

This section describes the header encryption variant of the Double Ratchet.

Message headers contain ratchet public keys and (PN, N) values. In some cases
it may be desirable to encrypt the headers so that an eavesdropper can’t tell
which messages belong to which sessions, or the ordering of messages within a
session.

With header encryption each party stores a symmetric header key and next
header key for both the sending and receiving directions. The sending header
key is used for encrypting headers for the current sending chain.

When a recipient receives a message she must first associate the message with
its relevant Double Ratchet session (assuming she has different sessions with
different parties). How this is done is outside of the scope of this document,
although the Pond protocol offers some ideas [6].

After associating the message with a session, the recipient attempts to decrypt
the header with that session’s receiving header key, next header key, and any
header keys corresponding to skipped messages. Successful decryption with the
next header key indicates the recipient must perform a DH ratchet step. During
a DH ratchet step the next header keys replace the current header keys, and
new next header keys are taken as additional output from the root KDF.

In the below diagram Alice has been initialized with Bob’s ratchet public key
and shared secrets for the initial root key, the sending header key (HK), and the
receiving next header key (NHK). As part of initialization Alice generates her
ratchet key pair and updates the root chain to derive a new root key, sending
chain key, and sending next header key (NHK):

Ratchet Root Sending Receiving
q«--- @— Initial shared secrets
——————
| /
R —CLD
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When Alice sends her first message A1, she encrypts its header with the sending
header key she was initialized with:

Ratchet Root Sending Receiving
A
_ RK N N

If Alice next receives a response Bl from Bob, its header will be encrypted with
the receiving next header key that she was initialized with. Alice applies a DH
ratchet step which shifts the next header keys into the current header keys, and
generates new next header keys:

Sending Receiving
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Alice next sends a message A2, then receives a message B2 using the current
receiving header key and containing the same ratchet public key she received in
message B1. Alice then sends messages A3 and A4. The current header keys
are used for all sent and received messages:

Sending Receiving
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Alice then receives message B3 containing Bob’s next ratchet key and with its
header encrypted by the next receiving header key. Successful header decryption
with the next header key will trigger a DH ratchet step. Alice then receives B4
with the same ratchet key and header key, then sends a message A5. Alice’s
final state will be as follows:

Ratchet Root Sending Receiving

1

=

Before B3
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4.2. External functions

Additional functions are required for header encryption:

e HENCRYPT(hk, plaintext): Returns the AEAD encryption of plain-
text with header key hk. Because the same hk will be used repeatedly, the
AEAD nonce must either be a stateful non-repeating value, or must be a
random non-repeating value chosen with at least 128 bits of entropy.

e HDECRYPT((hk, ciphertext): Returns the authenticated decryption
of ciphertext with header key hk. If authentication fails, or if the header
key hk is empty (None), returns None.

e KDF RK_HE(rk, dh__out): Returns a new root key, chain key, and
next header key as the output of applying a KDF keyed by root key 7k to
a Diffie-Hellman output dh_ out.

4.3. State variables

Additional state variables are required:

e HKs, HKr: 32-byte Header Keys for sending and receiving
e NHKs, NHKr: 32-byte Next Header Keys for sending and receiving

The following variable’s definition is changed:

e MKSKIPPED: Dictionary of skipped-over message keys, indexed by
header key and message number. Raises an exception if too many elements
are stored.

4.4. Initialization

Some additional shared secrets must be used to initialize the header keys:

e Alice’s sending header key and Bob’s next receiving header key must be
set to the same value, so that Alice’s first message triggers a DH ratchet
step for Bob.

e Alice’s next receiving header key and Bob’s next sending header key must
be set to the same value, so that after Bob’s first DH ratchet step, Bob’s
next message triggers a DH ratchet step for Alice.

Once Alice and Bob have agreed on SK, Bob’s ratchet public key, and these
additional values, Alice calls RatchetInitAliceHE() and Bob calls RatchetInit-
BobHE():

26



def RatchetInitAliceHE(state, SK, bob_dh_public_key, shared_hka, shared_nhkb):
state.DHRs = GENERATE_DH()
state.DHRr = bob_dh_public_key
state.RK, state.CKs, state.NHKs = KDF_RK_HE(SK, DH(state.DHRs, state.DHRr))
state.CKr = None
state.Ns = 0
state.Nr = 0
state.PN = 0
state.MKSKIPPED = {}
state.HKs = shared_hka
state.HKr = None
state.NHKr = shared_nhkb

def RatchetInitBobHE(state, SK, bob_dh_key_pair, shared_hka, shared_nhkb):
state.DHRs = bob_dh_key_pair
state.DHRr = None
state.RK = SK
state.CKs = None
state.CKr = None
state.Ns
state.Nr
state.PN = 0
state.MKSKIPPED = {}
state.HKs = None
state.NHKs = shared_nhkb
state.HKr = None
state.NHKr = shared_hka

=0
=0

4.5. Encrypting messages

The RatchetEncryptHE() function is called to encrypt messages with header
encryption:

def RatchetEncryptHE(state, plaintext, AD):
state.CKs, mk = KDF_CK(state.CKs)
header = HEADER(state.DHRs, state.PN, state.Ns)
enc_header = HENCRYPT (state.HKs, header)
state.Ns += 1
return enc_header, ENCRYPT(mk, plaintext, CONCAT(AD, enc_header))

27



4.6. Decrypting messages

RatchetDecryptHE() is called to decrypt messages with header encryption:

def RatchetDecryptHE(state, enc_header, ciphertext, AD):
plaintext = TrySkippedMessageKeysHE(state, enc_header, ciphertext, AD)
if plaintext != None:
return plaintext
header, dh_ratchet = DecryptHeader(state, enc_header)
if dh_ratchet:
SkipMessageKeysHE(state, header.pn)
DHRatchetHE(state, header)
SkipMessageKeysHE(state, header.n)
state.CKr, mk = KDF_CK(state.CKr)
state.Nr += 1
return DECRYPT (mk, ciphertext, CONCAT(AD, enc_header))

def TrySkippedMessageKeysHE(state, enc_header, ciphertext, AD):
for ((hk, n), mk) in state.MKSKIPPED.items():
header = HDECRYPT(hk, enc_header)
if header != None and header.n == n:
del state.MKSKIPPED[hk, n]
return DECRYPT (mk, ciphertext, CONCAT(AD, enc_header))
return None

def DecryptHeader(state, enc_header):
header = HDECRYPT(state.HKr, enc_header)
if header != Nome:
return header, False
header = HDECRYPT(state.NHKr, enc_header)
if header != Nome:
return header, True
raise Error()

def SkipMessageKeysHE(state, until):
if state.Nr + MAX_SKIP < until:
raise Error()
if state.CKr != None:
while state.Nr < until:
state.CKr, mk = KDF_CK(state.CKr)
state.MKSKIPPED [state.HKr, state.Nr] = mk
state.Nr += 1
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def DHRatchetHE(state, header):
state.PN = state.Ns
state.Ns = 0

state.Nr = 0
state.HKs = state.NHKs
state.HKr = state.NHKr

state.DHRr = header.dh
state.RK, state.CKr, state.NHKr
state.DHRs = GENERATE_DH()
state.RK, state.CKs, state.NHKs

KDF_RK_HE(state.RK, DH(state.DHRs, state.DHRr))

KDF_RK_HE(state.RK, DH(state.DHRs, state.DHRr))

5. Implementation considerations

5.1. Integration with X3DH

The Double Ratchet algorithm can be used in combination with the X3DH key
agreement protocol [1]. The Double Ratchet plays the role of a “post-X3DH”
protocol which takes the session key SK negotiated by X3DH and uses it as the
Double Ratchet’s initial root key.

The following outputs from X3DH are used by the Double Ratchet:

e The SK output from X3DH becomes the SK input to Double Ratchet
initialization (see Section 3.3).

e The AD output from X3DH becomes the AD input to Double Ratchet
encryption and decryption (see Section 3.4 and Section 3.5).

e Bob’s signed prekey from X3DH (SPKp) becomes Bob’s initial ratchet
public key (and corresponding key pair) for Double Ratchet initialization.

Any Double Ratchet message encrypted using Alice’s initial sending chain can
serve as an “initial ciphertext” for X3DH. To deal with the possibility of lost or
out-of-order messages, a recommended pattern is for Alice to repeatedly send
the same X3DH initial message prepended to all of her Double Ratchet messages
until she receives Bob’s first Double Ratchet response message.
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5.2.

Recommended cryptographic algorithms

The following choices are recommended for instantiating the cryptographic
functions from Section 3.1:

GENERATE__DH(): This function is recommended to generate a key
pair based on the Curve25519 or Curve448 elliptic curves [7].

DH(dh__pair, dh__pub): This function is recommended to return the
output from the X25519 or X448 function as defined in [7]. There is no
need to check for invalid public keys.

KDF__RK(rk, dh__out): This function is recommended to be imple-
mented using HKDF [3] with SHA-256 or SHA-512 [8], using 7k as HKDF
salt, dh__out as HKDF input key material, and an application-specific byte
sequence as HKDF info. The info value should be chosen to be distinct
from other uses of HKDF in the application.

KDF _CK/(ck): HMAC [2] with SHA-256 or SHA-512 [8] is recommended,
using ck as the HMAC key and using separate constants as input (e.g. a
single byte 0x01 as input to produce the message key, and a single byte
0x02 as input to produce the next chain key).

ENCRYPT(mk, plaintext, associated__data): This function is rec-
ommended to be implemented with an AEAD encryption scheme based on
either SIV or a composition of CBC with HMAC [5], [9]. These schemes
provide some misuse-resistance in case a key is mistakenly used multiple
times. A concrete recommendation based on CBC and HMAC is as follows:

— HKDF is used with SHA-256 or SHA-512 to generate 80 bytes of
output. The HKDF salt is set to a zero-filled byte sequence equal
to the hash’s output length. HKDF input key material is set to mk.
HKDF info is set to an application-specific byte sequence distinct
from other uses of HKDF in the application.

— The HKDF output is divided into a 32-byte encryption key, a 32-byte
authentication key, and a 16-byte IV.

— The plaintext is encrypted using AES-256 in CBC mode with PKCS#7
padding, using the encryption key and IV from the previous step [10],
[11].

— HMAC is calculated using the authentication key and the same hash
function as above [2]. The HMAC input is the associated data
prepended to the ciphertext. The HMAC output is appended to the
ciphertext.
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6. Security considerations

6.1. Secure deletion

The Double Ratchet algorithm is designed to provide security against an attacker
who records encrypted messages and then compromises the sender or receiver at
a later time. This security could be defeated if deleted plaintext or keys could
be recovered by an attacker with low-level access to the compromised device.
Recovering deleted data from storage media is a complicated topic which is
outside the scope of this document.

6.2. Recovery from compromise

The DH ratchet is designed to recover security against a passive eavesdropper
who observes encrypted messages after compromising one (or both) of the parties
to a session. Despite this mitigation, a compromise of secret keys or of device
integrity will have a devastating effect on the security of future communications.
For example:

e The attacker could use the compromised keys to impersonate the compro-
mised party (e.g. using the compromised party’s identity private key with
X3DH to create new sessions).

e The attacker could substitute her own ratchet keys via continuous active
man-in-the-middle attack, to maintain eavesdropping on the compromised
session.

e The attacker could modify a compromised party’s RNG so that future
ratchet private keys are predictable.

If a party suspects its keys or devices have been compromised, it must replace
them immediately.

6.3. Cryptanalysis and ratchet public keys

Because all DH ratchet computations are mixed into the root key, an attacker
who can decrypt a session with passive cryptanalysis might lose this ability if
she fails to observe some ratchet public key.

This is not a reliable countermeasure against cryptanalysis, of course. If weak-
nesses are discovered in any of the cryptographic algorithms a session relies upon,
the session should be discarded and replaced with a new session using strong

cryptography.
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6.4. Deletion of skipped message keys

Storing skipped message keys introduces some risks:

e A malicious sender could induce recipients to store large numbers of skipped
message keys, possibly causing denial-of-service due to consuming storage
space.

e The lost messages may have been seen (and recorded) by an attacker, even
though they didn’t reach the recipient. The attacker can compromise the
intended recipient at a later time to retrieve the skipped message keys.

To mitigate the first risk parties should set reasonable per-session limits on the
number of skipped message keys that will be stored (e.g. 1000). To mitigate
the second risk parties should delete skipped message keys after an appropriate
interval. Deletion could be triggered by a timer, or by counting a number of
events (messages received, DH ratchet steps, etc.).

6.5. Deferring new ratchet key generation

During each DH ratchet step a new ratchet key pair and sending chain are
generated. As the sending chain is not needed right away, these steps could be
deferred until the party is about to send a new message. This would slightly
increase security by shortening the lifetime of ratchet keys, at the cost of some
complexity.

6.6. Truncating authentication tags

If the ENCRYPT/() function is implemented using CBC and HMAC as described
in Section 5.2, then truncating the final HMAC output to 128 bits to reduce
message size is acceptable. Truncating it further might be acceptable, though
requires careful analysis. In no case should the final HMAC be truncated to less
than 64 bits.

If the ENCRYPT() function is implemented differently, then truncation might
require a more complicated analysis and is not recommended.

6.7. Implementation fingerprinting
If this protocol is used in settings with anonymous parties, care should be taken
that implementations behave identically in all cases.

In an anonymous context, implementations are advised to follow the algorithms
from Sections 3 and 4 precisely. Such implementations are also advised to use
identical limits for the number of skipped message keys stored, and identical
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deletion policies for skipped message keys. Deletion policies should be based on
deterministic events (e.g. messages received), rather than time.

7. IPR

This document is hereby placed in the public domain.
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